Insensitivity of the Catastrophic Damage Threshold of Laser Optics to Dust and other Surface Defects

2009 ◽  
pp. 256-256-9 ◽  
Author(s):  
HE Bennett

2020 ◽  
Vol 34 (08) ◽  
pp. 2050060 ◽  
Author(s):  
Bo Li ◽  
Xia Xiang ◽  
Chengxiang Tian ◽  
Chunyuan Hou ◽  
Wei Liao ◽  
...  

The laser damage resistance of fused silica optics depends significantly on the surface quality. In this work, anisotropic etching with inert ion beams at various ion incident angles was performed to investigate the evolution of the fused silica surface. The results show that the surface is smoothed when the incident angle is below [Formula: see text]. However, the fused silica surface starts to become coarse owing to the formation of nanostructures on the surface when the incident angle exceeds [Formula: see text]. Further, ion beam etching at a large incident angle of [Formula: see text] removes subsurface defects and less induces nanostructures, resulting in reduction of the surface roughness. The concentrations of impurities and defects are both significantly reduced after ion beam etching. The surface quality, subsurface and surface defects, and surface impurities determine the variation in the laser damage threshold of fused silica with the ion incident angle. The results demonstrate successful application of ion beam etching to improve the laser damage resistant characteristics of fused silica optics. Ion beam etching is a very versatile tool that provides physical erosion to anisotropically mitigate surface damage of fused silica.



2022 ◽  
Author(s):  
Huanyu Sun ◽  
Shiling Wang ◽  
Xiaobo Hu ◽  
Hongjie Liu ◽  
Xiaoyan Zhou ◽  
...  

Abstract Surface defects (SDs) and subsurface defects (SSDs) are the key factors decreasing the laser damage threshold of optics. Due to the spatially stacked structure, accurately detecting and distinguishing them has become a major challenge. Herein a detection method for SDs and SSDs with multisensor image fusion is proposed. The optics is illuminated by a laser under dark field condition, and the defects are excited to generate scattering and fluorescence lights, which are received by two image sensors in a wide-field microscope. With the modified algorithms of image registration and feature-level fusion, different types of defects are identified and extracted from the scattering and fluorescence images. Experiments show that two imaging modes can be realized simultaneously by multisensor image fusion, and HF etching verifies that SDs and SSDs of polished optics can be accurately distinguished. This method provides a more targeted reference for the evaluation and control of the defects of optics, and exhibits potential in the application of material surface research.



2006 ◽  
Author(s):  
L. Jensen ◽  
M. Jupé ◽  
H. Mädebach ◽  
H. Ehlers ◽  
K. Starke ◽  
...  


2010 ◽  
Vol 22 (1) ◽  
pp. 159-164 ◽  
Author(s):  
陈明君 Chen Mingjun ◽  
姜伟 Jiang Wei ◽  
庞启龙 Pang Qilong ◽  
刘新艳 Liu Xinyan


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Qiao Chen ◽  
He Wang ◽  
Rucheng Dai ◽  
Zhongping Wang ◽  
Xiaoping Tao ◽  
...  

Laser-induced damage threshold is the main limitation for fused silica optics in high-power laser applications. The existence of various defects near the surface is the key factor for the degradation of the threshold. In this work, the photoluminescence spectra at different regions of the damaged and recovered fused silica samples are recorded to analyze the correlation between photoluminescence of surface defects and laser-induced damage threshold. The experimental data concluded the inverse proportional correlation between fluorescence and laser-induced damage threshold value. The weak photoluminescence is the guarantee of the high laser-induced damage threshold, and then the higher local Si nanocluster concentration corresponds with the higher laser-induced damage threshold value for the fused silica optics after CO2 laser treatment. The investigation reveals that photoluminescence measurement can be employed to check the quality of pristine fused silica and evaluate the tendency of the laser-induced damage threshold value. The current results are helpful for understanding the evolution of interaction from CO2 laser treatment and fused silica optics and can provide the guide of process technology for the high quality of fused silica optics.



Author(s):  
Kenneth R. Lawless

One of the most important applications of the electron microscope in recent years has been to the observation of defects in crystals. Replica techniques have been widely utilized for many years for the observation of surface defects, but more recently the most striking use of the electron microscope has been for the direct observation of internal defects in crystals, utilizing the transmission of electrons through thin samples.Defects in crystals may be classified basically as point defects, line defects, and planar defects, all of which play an important role in determining the physical or chemical properties of a material. Point defects are of two types, either vacancies where individual atoms are missing from lattice sites, or interstitials where an atom is situated in between normal lattice sites. The so-called point defects most commonly observed are actually aggregates of either vacancies or interstitials. Details of crystal defects of this type are considered in the special session on “Irradiation Effects in Materials” and will not be considered in detail in this session.



Author(s):  
D.P. Malta ◽  
S.A. Willard ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
J.B. Posthill ◽  
...  

Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. A major goal of current device-related diamond research is to achieve a high quality epitaxial film on an inexpensive, readily available, non-native substrate. One step in the process of achieving this goal is understanding the nucleation and growth processes of diamond films on diamond substrates. Electron microscopy has already proven invaluable for assessing polycrystalline diamond films grown on nonnative surfaces.The quality of the grown diamond film depends on several factors, one of which is the quality of the diamond substrate. Substrates commercially available today have often been found to have scratched surfaces resulting from the polishing process (Fig. 1a). Electron beam-induced current (EBIC) imaging shows that electrically active sub-surface defects can be present to a large degree (Fig. 1c). Growth of homoepitaxial diamond films by rf plasma-enhanced chemical vapor deposition (PECVD) has been found to planarize the scratched substrate surface (Fig. 1b).



Author(s):  
William Krakow

It has long been known that defects such as stacking faults and voids can be quenched from various alloyed metals heated to near their melting point. Today it is common practice to irradiate samples with various ionic species of rare gases which also form voids containing solidified phases of the same atomic species, e.g. ref. 3. Equivalently, electron irradiation has been used to produce damage events, e.g. ref. 4. Generally all of the above mentioned studies have relied on diffraction contrast to observe the defects produced down to a dimension of perhaps 10 to 20Å. Also all these studies have used ions or electrons which exceeded the damage threshold for knockon events. In the case of higher resolution studies the present author has identified vacancy and interstitial type chain defects in ion irradiated Si and was able to identify both di-interstitial and di-vacancy chains running through the foil.



Author(s):  
S. Yegnasubramanian ◽  
V.C. Kannan ◽  
R. Dutto ◽  
P.J. Sakach

Recent developments in the fabrication of high performance GaAs devices impose crucial requirements of low resistance ohmic contacts with excellent contact properties such as, thermal stability, contact resistivity, contact depth, Schottky barrier height etc. The nature of the interface plays an important role in the stability of the contacts due to problems associated with interdiffusion and compound formation at the interface during device fabrication. Contacts of pure metal thin films on GaAs are not desirable due to the presence of the native oxide and surface defects at the interface. Nickel has been used as a contact metal on GaAs and has been found to be reactive at low temperatures. Formation Of Ni2 GaAs at 200 - 350C is reported and is found to grow epitaxially on (001) and on (111) GaAs, but is shown to be unstable at 450C. This paper reports the investigations carried out to understand the microstructure, nature of the interface and composition of sputter deposited and annealed (at different temperatures) Ni-Sb ohmic contacts on GaAs by TEM. Attempts were made to correlate the electrical properties of the films such as the sheet resistance and contact resistance, with the microstructure. The observations are corroborated by Scanning Auger Microprobe (SAM) investigations.



Author(s):  
Feng Tsai ◽  
J. M. Cowley

Reflection electron microscopy (REM) has been used to study surface defects such as surface steps, dislocations emerging on crystal surfaces, and surface reconstructions. However, only a few REM studies have been reported about the planar defects emerging on surfaces. The interaction of planar defects with surfaces may be of considerable practical importance but so far there seems to be only one relatively simple theoretical treatment of the REM contrast and very little experimental evidence to support its predications. Recently, intersections of both 90° and 180° ferroelectric domain boundaries with BaTiO3 crystal surfaces have been investigated by Tsai and Cowley with REM.The REM observations of several planar defects, such as stacking faults and domain boundaries have been continued by the present authors. All REM observations are performed on a JEM-2000FX transmission electron microscope. The sample preparations may be seen somewhere else. In REM, the incident electron beam strikes the surface of a crystal with a small glancing angle.



Sign in / Sign up

Export Citation Format

Share Document