Evaluation of Residual Stress Corrections to Fracture Toughness Values

Author(s):  
Michael R. Hill ◽  
John E. VanDalen
Author(s):  
Dongil Kwon ◽  
Jong Hyoung Kim ◽  
Ohmin Kwon ◽  
Woojoo Kim ◽  
Sungki Choi ◽  
...  

The instrumented indentation technique (IIT) is a novel method for evaluating mechanical properties such as tensile properties, toughness and residual stress by analyzing the indentation load-depth curve measured during indentation. It can be applied directly on small-scale and localized sections in industrial structures and structural components since specimen preparation is very easy and the experimental procedure is nondestructive. We introduce the principles for measuring mechanical properties with IIT: tensile properties by using a representative stress and strain approach, residual stress by analyzing the stress-free and stressed-state indentation curves, and fracture toughness of metals based on a ductile or brittle model according to the fracture behavior of the material. The experimental results from IIT were verified by comparing results from conventional methods such as uniaxial tensile testing for tensile properties, mechanical saw-cutting and hole-drilling methods for residual stress, and CTOD test for fracture toughness.


1991 ◽  
Vol 113 (3) ◽  
pp. 380-384
Author(s):  
P. B. Crosley ◽  
E. J. Ripling

Safety of structures can be assured, even if cracks initiate in localized regions of abnormally low toughness, and/or abnormally high stress (LT/HS), if the materials from which they are fabricated have a high enough crack arrest fracture toughness. When this requirement is met, fast-running cracks that initiate in LT/HS regions arrest when their tip encounters material having normal toughness and stresses. The work described in this paper was carried out to determine the crack arrest capability of LNG storage tanks by determining the longest LT/HS region in which a crack could initiate and still arrest when it leaves this region. The determination consisted of relating a fracture analysis with the measured full-thickness crack arrest fracture toughness of three 9-percent Ni plates which were reported in reference [1]. The calculations used a residual stress pattern, produced by welding, superimposed on a typical membrane stress. The residual stress was selected as an example of a localized high stress region. It was found that tanks built from the poorest of the three tested plates could arrest cracks about 3/4 m long, while tanks built from the two tougher plates could arrest cracks almost 2 m long.


2012 ◽  
pp. 93-102 ◽  
Author(s):  
Ralf Webler ◽  
Markus Krottenthaler ◽  
Steffen Neumeier ◽  
Karsten Durst ◽  
Mathias Göken

Author(s):  
Yoichi Yamashita ◽  
Fumiyoshi Minami

This paper studies the method for estimating the residual stress effects on brittle fracture of structural component based on the Weibull stress criterion. Experiments show that the critical CTOD and the critical load of wide plate with welding residual stress are apparently smaller than those of wide plate without residual stress. It has been found that the critical CTODs of wide plate with and without residual stress can be predicted from the 3PB fracture toughness test results based on the Weibull stress criterion. Constraint loss effects on CTOD of wide plate with residual stress can be assessed by the equivalent CTOD ratio. The equivalent CTOD ratio β is defined as the ratio, β = δ/δWP, where δ and δWP, are CTODs of the standard fracture toughness specimen and wide plate, respectively, at the same level of the Weibull stress. Calculation results of beta are also shown for various residual stress levels and crack lengh based on the Weibull stress criterion. Fracture assessment results using β are shown within the context of CTOD design curve. An excessive conservatism observed in the conventional procedure is reasonably reduced by applying the equivalent CTOD ratio, β.


1992 ◽  
Vol 36 ◽  
pp. 543-549
Author(s):  
Masaaki Tsuda ◽  
Yukio Hirose ◽  
Zenjiro Yajima ◽  
Keisuke Tanaka

X-ray fractography is a new method utilizing the X-ray diffraction technique to observe the fracture surface for the analysis of the micromechanisms and mechanics of fracture. X-ray residual stress has been confirmed to be a particularly useful parameter when studying the fracture surfaces of high strength steels. The method has been applied to the fracture surface of fracture toughness and fatigue specimens.


1989 ◽  
Vol 33 ◽  
pp. 327-334 ◽  
Author(s):  
Masaaki Tsuda ◽  
Yukic Hirose ◽  
Zenjiro Yajima ◽  
Keisuke Tanaka

X-ray fractography is a new method utilizing the X-ray diffraction technique to observe the fracture surface for the analysis of the micromechanisms and mechanics of fracture. The X-ray residual stress has been confirmed to be a particularly useful parameter when studying the fracture surfaces of high strength steels. The method has been applied to the fracture surface of fracture toughness and fatigue specimens.


1990 ◽  
Vol 34 ◽  
pp. 719-727 ◽  
Author(s):  
Sumio Tanaka ◽  
Yukio Hirose ◽  
Keisuke Tanaka

The residual stress left on the fracture surface is one of the important parameters in X-ray fractographic study. It has been used to analyze fracture mechanisms in fracture toughness and fatigue tests especially of high strength steels.In this paper, X-ray fractography was applied to brittle fracture of alumina (Al2O3) and zirconia (ZΓO2) ceramics.


Author(s):  
S. J. Lewis ◽  
S. Hossain ◽  
C. E. Truman ◽  
D. J. Smith ◽  
M. Hofmann

A number of previously published works have shown that the presence of residual stresses can significantly affect measurements of fracture toughness, unless they are properly accounted for when calculating parameters such as the crack driving force. This in turn requires accurate, quantitative residual stress data for the fracture specimens prior to loading to failure. It is known that material mechanical properties may change while components are in service, for example due to thermo-mechanical load cycles or neutron embrittlement. Fracture specimens are often extracted from large scale components in order to more accurately determine the current fracture resistance of components. In testing these fracture specimens it is generally assumed that any residual stresses present are reduced to a negligible level by the creation of free surfaces during extraction. If this is not the case, the value of toughness obtained from testing the extracted specimen is likely to be affected by the residual stress present and will not represent the true material property. In terms of structural integrity assessments, this can lead to ‘double accounting’ — including the residual stresses in both the material toughness and the crack driving force, which in turn can lead to unnecessary conservatism. This work describes the numerical modelling and measurement of stresses in fracture specimens extracted from two different welded parent components: one component considerably larger than the extracted specimens, where considerable relaxation would be expected as well as a smaller component where appreciable stresses were expected to remain. The results of finite element modelling, along with residual stress measurements obtained using the neutron diffraction technique, are presented and the likely implications of the results in terms of measured fracture toughness are examined.


Sign in / Sign up

Export Citation Format

Share Document