scholarly journals Photogrammetric 3D Body Scanner for Low Cost Textile Mass Customization

Author(s):  
Gianluca Percoco ◽  
Luigi M. Galantucci
2019 ◽  
Vol 9 (1) ◽  
pp. 450-458
Author(s):  
Juho-Pekka Virtanen ◽  
Kim-Niklas Antin ◽  
Matti Kurkela ◽  
Hannu Hyyppä

AbstractBy combining additive manufacturing with 3D measurement techniques, tailored production work-flows that include the digitizing of existing components, computer-aided design, and tool-free manufacturing of the customized parts can be envisioned, potentially reducing the costs of mass customization. The introduction of affordable depth cameras has greatly increased the consumer availability of 3D measuring. We present the application of an affordable depth camera for the 3D digitizing of existing components, the utilization of the produced data in the design process, and finally, the production of the designed component with additive manufacturing. The capabilities of the affordable depth camera system are evaluated by comparing it with photogrammetric 3D reconstruction, revealing issues in smaller geometric details and sharp edges.


2017 ◽  
Vol 29 (6) ◽  
pp. 857-867 ◽  
Author(s):  
Miyeon Lee ◽  
Dong Il Yoo ◽  
Sungmin Kim

Purpose The purpose of this paper is to develop a relatively inexpensive and easily movable three-dimensional (3D) body scanner. Design/methodology/approach Multiple depth perception cameras and a turntable were used to form the hardware and a client-server computer network was used to control the hardware. Findings A portable and inexpensive yet quite accurate body scanner system has been developed. Research limitations/implications The turntable mechanism and semi-automatic model alignment caused some error. Practical implications This scanner is expected to facilitate the acquisition of 3D human body or garment data easily for various research projects. Social implications Many researchers might have an easy access to 3D data of large object such as body or whole garment. Originality/value Inexpensive yet expandable scanning system has been developed using readily available components.


2012 ◽  
Vol 479-481 ◽  
pp. 98-101 ◽  
Author(s):  
Jun Hua Che ◽  
Qian Zeng ◽  
Shu You Zhang

The core capabilities are to provide full product space for customers with the low cost and high efficiency in customized manufacturers, and ultimately to meet the individual demand of customers. This paper proposes cloud-based service platform for mass customization by the advantages of cloud computing, in order to effectively achieve the company's core capabilities and integration of resources and meet the supply and demand between the fluctuations in orders and the long-lasting manufacturing capabilities. This paper mainly studies the service platform architecture and the core technology to improve the service capacity of mass customization business through the integration of resources, demand integration and optimal configuration.


Author(s):  
MICHELE GERMANI ◽  
FERRUCCIO MANDORLI

The use of modularity in the design of a new product or the adoption of a product platform, as the base to define new solutions within a product family, offers the company a chance to meet diverse customer needs at low cost because of economies of scale in all phases of the product's life cycle. At present, the concept of modularity in product design is becoming widely used in many industries such as automobiles and consumer electronics. However, if modularity and mass customization have attracted the interest of industries and researchers, the greatest efforts have been focused on the theoretical aspect whereas the related design support technologies have been only partially implemented. In this context, our intent is to develop highly reusable models, which are able to reconfigure themselves on the basis of new functional requirements. The proposed approach is based on the definition of what we callself-configuring componentsandmultiple-level functions. To describe the approach, a practical example related to the design of modules for woodworking machines is reported.


Author(s):  
Zhujun Wang ◽  
Cheng Chi ◽  
Mengyun Zhang ◽  
Xianyi Zeng ◽  
Pascal Bruniaux ◽  
...  

In this study, we have explored and discussed the data mining-based solutions to apparel size assignment using approach principle, K-means clustering, and support vector machine, respectively. A case of mass customization for men's pants in China with 200 adult males were employed to validate and evaluate the solutions. After anthropometric data acquisition and preprocessing, three key body dimensions were identified based on hierarchical clustering, as well as their ranges and fit models. Sequentially, we calculated all the possible values of the distance between the target population and the fit models by the enumeration algorithm. Afterward, we assigned the garment sizes for the target population using the abovementioned data mining approaches. Lastly, the solution based on support machine was considered as the optimal solution for pants mass customization after being comprehensively assessed by the aggregate loss of fit, the number of poor fit, accommodation rate of ideal fit, and the number of garment size employed, since it employed only 48 sizes to reach the accommodation rate of the target population up to 82%. The experimental results demonstrate that the present solution is a low-cost method for size assignment by exploiting the potentials of the existing sizing system, instead of creating new sizing systems, and also easy to be flexibly extended to any types of garments.


Author(s):  
Nicolo Biasi ◽  
Francesco Setti ◽  
Mattia Tavernini ◽  
Alberto Fornaser ◽  
Massimo Lunardelli ◽  
...  
Keyword(s):  
Low Cost ◽  

Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. D. Muzzy ◽  
R. D. Hester ◽  
J. L. Hubbard

Polyethylene is one of the most important plastics produced today because of its good physical properties, ease of fabrication and low cost. Studies to improve the properties of polyethylene are leading to an understanding of its crystalline morphology. Polyethylene crystallized by evaporation from dilute solutions consists of thin crystals called lamellae. The polyethylene molecules are parallel to the thickness of the lamellae and are folded since the thickness of the lamellae is much less than the molecular length. This lamellar texture persists in less perfect form in polyethylene crystallized from the melt.Morphological studies of melt crystallized polyethylene have been limited due to the difficulty of isolating the microstructure from the bulk specimen without destroying or deforming it.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
H. O. Colijn

Many labs today wish to transfer data between their EDS systems and their existing PCs and minicomputers. Our lab has implemented SpectraPlot, a low- cost PC-based system to allow offline examination and plotting of spectra. We adopted this system in order to make more efficient use of our microscopes and EDS consoles, to provide hardcopy output for an older EDS system, and to allow students to access their data after leaving the university.As shown in Fig. 1, we have three EDS systems (one of which is located in another building) which can store data on 8 inch RT-11 floppy disks. We transfer data from these systems to a DEC MINC computer using “SneakerNet”, which consists of putting on a pair of sneakers and running down the hall. We then use the Hermit file transfer program to download the data files with error checking from the MINC to the PC.


Sign in / Sign up

Export Citation Format

Share Document