scholarly journals Simulation Based Comparative Analysis of Resonant Frequency for Tunable Split Ring Resonator in Different Configurations

Author(s):  
M HARIS ◽  
MASHHOOD AHMAD ◽  
MUHAMMAD NAVEED ◽  
MUHAMMAD SHOAIB ◽  
TAHIR EJAZ ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


2020 ◽  
Vol 9 (1) ◽  
pp. 26-30
Author(s):  
Romi Fadli Syahputra ◽  
Yan Soerbakti ◽  
Riad Syech ◽  
Erman Taer ◽  
Saktioto Saktioto

Piranti-piranti elektronik maupun optoelektronik yang efisien dan responsif saat ini tengah masif dikembangkan dalam beragam bentuk dan jenis. Meta-material merupakan rancangan optoelektronik yang unik dengan sifat elektromagnetik yang tidak ditemukan secara alami, salah satunya adalah peristiwa indeks bias negatif. Eksplorasi terhadap banyak ragam struktur metamaterial sangat penting dilakukan untuk mengidentifikasi karakteristik tiap struktur. Salah satu struktur metamaterial yang menarik dikaji adalah bentuk heksagonal. Penelitian ini menginvestigasi karakteristik frekuensi resonan dan distribusi medan elektromagnetik metamaterial split ring resonator heksagonal (SRR-H) yang dikombinasikan dengan stripe line (SL) berupa logam tembaga. Lebih lanjut, jumlah SL divariasikan dari 0 - 5 unit dan disimulasikan dalam medium udara dalam rentang frekuensi 1 – 7,5 GHz. Hasil simulasi menunjukan adanya pergeseran frekuensi resonan untuk tiap penambahan SL dalam rentang frekuensi 4,31 – 5,82 GHz. Sebaran medan listrik cenderung terpusat pada cincin resonator sedangkan medan magnet cenderung terdistribusi pada SL. Desain metamaterial SRR-H dengan 3 SL memberikan respon disipasi energi yang terkecil dengan medan E maksimum 2,59 kV×m-1 dan medan H maksimum 8,69 A×m-1. Desain SRR-H ini cukup potensial untuk diaplikasikan sebagai antena gelombang elektomagnetik yang efisien dan juga sebagai biosensor. Efficient and responsive electronic and optoelectronic devices are currently being massively developed in various forms and types. Metamaterial is a unique optoelectronic design with electromagnetic properties that are not found naturally, one of its properties is a negative refractive index. Exploration of different types of metamaterial structures is very important to identify the characteristics of each structure. One of the interesting metamaterial structures is a hexagonal shape. This research investigates the resonant frequency characteristics and electromagnetic field distribution of split-ring resonator (SRR-H) hexagonal-shaped metamaterial which is combined with the copper stripe line (SL). Furthermore, the number of SL is varied from 0 to 5 units and simulated in the air medium in frequency range of 1 - 7.5 GHz. The simulation results show a resonant frequency shift occurred for each SL combination in the 4.31 - 5.82 GHz frequency range. The distribution of the electric field tends to be concentrated on the resonator while the magnetic field tends to be distributed on the SL. The SRR-H metamaterial with 3 SL provides the smallest energy dissipation response with a maximum E field of 2.59 kV×m-1 and a maximum H field of 8.69 A×m-1. The SRR-H design is potential enough to be applied as an efficient electromagnetic wave antenna and also as a biosensor.Keywords: Metamaterials, SRR-H, strip line, resonant frequency, electromagnetic field


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 300
Author(s):  
Muhammad Mughal ◽  
Tahir Ejaz ◽  
Arshad ◽  
Ashiq Hussain

This article presents a new technique for determining accurate values of resonant frequency and quality factor pertaining to the split-ring resonator. Different conducting shield materials have been used around a copper split-ring. The split-ring has been designed to operate at about 2.1 GHz. Various equations were worked out earlier to determine the values of resonant frequency and quality factor. However, these equations yielded different solutions. Therefore, simulations were used to obtain the values of the resonant frequency and quality factor of the split-ring resonator with different five-shield materials, using High-Frequency Structure Simulator (HFSS) software. In this work, a novel method has been introduced for obtaining values of resonant frequency which provides results with negligible error. An optimal technique, namely time-varying particle swarm optimization (TVPSO), was then performed to obtain two sets of equations for resonant frequency and quality factor. The two sets of equations, optimized using TVPSO, were compared for their effectiveness in matching the actual frequency and quality factor for each of the five materials. It was found that the TVPSO was significant in achieving the frequency and quality factor regression equation to accurately resemble the actual values portrayed by the low mean absolute error.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tahir Ejaz ◽  
Hamood Ur Rahman ◽  
T. Tauqeer ◽  
Adnan Masood ◽  
Tahir Zaidi

Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.


2019 ◽  
Vol 8 (4) ◽  
pp. 12207-12209

Water is an essential thing for life. Now days due to population growth and pollution, the quality of water is degraded. In this paper, a single element double split ring resonator (DSRR) has been presented as a sensor to detect the quality of water. Here, two square shape metallic split rings are designed along with the microstrip line. On the back side of the substrate, defected ground structure (DGS) is introduced. The resonant frequency of the resonator is 11.12 GHz. Quality of water is detected by the shift in S21 resonant frequency with the variation in transmission coefficient. This sensor can be used in our daily life to detect the quality of water and it may be useful in medical field also


2021 ◽  
Author(s):  
Shantha Selvakumari R ◽  
Vishnoo Priyaa P

Abstract This paper presents the design and simulation of patch antenna loaded with metamaterial called Complementary Split Ring Resonator (CSRR) with increased gain and bandwidth suitable for wireless applications such as satellite, TV and radar applications. FR4 substrate with dielectric constant (εr ) of 4.4 is used. The radiating patch consists of CSRR structure fed by microstrip line to achieve triple(C, X, Ku ) band characteristics. The proposed antenna is designed and simulated using Ansys High Frequency Structural Simulator (HFSS). The proposed antenna with 4 rings having a resonant frequency of 7.662, 9.8510, 10.9455, 11.8410, 12.7365 and 13.7315GHz and the bandwidth of 230, 1090, 640, 580, 620 and 2000MHz respectively. The proposed antenna with 6 rings also having a resonant frequency of 7.7615, 9.9525, 11.0450, 11.9405 and13.7315GHz and bandwidth of 160, 1130, 490, 1360 and 1480MHz are achieved. The proposed antenna is analyzed in terms of return loss, VSWR, gain and bandwidth. The electric field and surface current distribution were observed for the proposed antenna having 6 rings.


Sign in / Sign up

Export Citation Format

Share Document