scholarly journals A Proximal Promoter Domain Containing a Homeodomain-Binding Core Motif Interacts with Multiple Transcription Factors, Including HoxA5 and Phox2 Proteins, and Critically Regulates Cell Type-Specific Transcription of the Human Norepinephrine Transporter Gene

2002 ◽  
Vol 22 (7) ◽  
pp. 2579-2589 ◽  
Author(s):  
Chun-Hyung Kim ◽  
Dong-Youn Hwang ◽  
Jae-Joon Park ◽  
Kwang-Soo Kim
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4187-4187
Author(s):  
Marina Kreutz ◽  
Achim Ehrnsperger ◽  
Michael Rehli ◽  
Reinhard Andreesen

Abstract MADDAM (Metalloprotease And Disintegrin Dendritic Cell Antigen Marker, ADAM19), a human metalloprotease belonging to the ADAM-family, is strongly expressed during in vitro differentiation of monocytes into dendritic cells (DC), whereas differentiation of monocytes into macrophages (MAC) is associated with a loss of MADDAM transcription. To investigate the mechanisms underlying this cell-type specific expression pattern we defined the transcriptional start site and the proximal promoter of the MADDAM gene. Gene bank analysis of the CpG island promoter and first intron revealed putative binding sites for several transcription factors, including VDR, NF-kB and Sp1-family factors. EMSA demonstrated binding of Sp1, Sp3, NF-kB and VDR to their putative binding sites in the proximal promoter region and mutation of these elements led to a decreased reporter activity of the proximal promoter in luciferase assays. A minimal promoter construct of 150-bp showed weak reporter activity in primary monocyte-derived MAC and a threefold higher activity in monocyte-derived DC, indicating that differential binding of transcription factors contributes to the cell-type specific regulation of MADDAM. Transfection of monocytic THP-1 cells with the 150-bp fragment also resulted in significant reporter activity, despite the lack of endogenous MADDAM expression. Interestingly, Trichostatin A (TSA), a known inhibitor of histone deacetylation, lead to a dose dependent induction of MADDAM mRNA in THP-1 cells. Chromatin immunoprecipitation (ChIP) assays demonstrate increased levels of acetylated histones H3 and H4 in DC as compared to MAC, indicating an important role of histone acetylation in the cell-type specific regulation of the MADDAM gene.


Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 937 ◽  
Author(s):  
Derya Kabacaoglu ◽  
Dietrich A. Ruess ◽  
Jiaoyu Ai ◽  
Hana Algül

Regulation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/Rel transcription factors (TFs) is extremely cell-type-specific owing to their ability to act disparately in the context of cellular homeostasis driven by cellular fate and the microenvironment. This is also valid for tumor cells in which every single component shows heterogenic effects. Whereas many studies highlighted a per se oncogenic function for NF-κB/Rel TFs across cancers, recent advances in the field revealed their additional tumor-suppressive nature. Specifically, pancreatic ductal adenocarcinoma (PDAC), as one of the deadliest malignant diseases, shows aberrant canonical-noncanonical NF-κB signaling activity. Although decades of work suggest a prominent oncogenic activity of NF-κB signaling in PDAC, emerging evidence points to the opposite including anti-tumor effects. Considering the dual nature of NF-κB signaling and how it is closely linked to many other cancer related signaling pathways, it is essential to dissect the roles of individual Rel TFs in pancreatic carcinogenesis and tumor persistency and progression. Here, we discuss recent knowledge highlighting the role of Rel TFs RelA, RelB, and c-Rel in PDAC development and maintenance. Next to providing rationales for therapeutically harnessing Rel TF function in PDAC, we compile strategies currently in (pre-)clinical evaluation.


Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. e161-e171 ◽  
Author(s):  
Thu-Hang Pham ◽  
Christopher Benner ◽  
Monika Lichtinger ◽  
Lucia Schwarzfischer ◽  
Yuhui Hu ◽  
...  

Abstract Cellular differentiation is orchestrated by lineage-specific transcription factors and associated with cell type–specific epigenetic signatures. In the present study, we used stage-specific, epigenetic “fingerprints” to deduce key transcriptional regulators of the human monocytic differentiation process. We globally mapped the distribution of epigenetic enhancer marks (histone H3 lysine 4 monomethylation, histone H3 lysine 27 acetylation, and the histone variant H2AZ), describe general properties of marked regions, and show that cell type–specific epigenetic “fingerprints” are correlated with specific, de novo–derived motif signatures at all of the differentiation stages studied (ie, hematopoietic stem cells, monocytes, and macrophages). We validated the novel, de novo–derived, macrophage-specific enhancer signature, which included ETS, CEBP, bZIP, EGR, E-Box and NF-κB motifs, by ChIP sequencing for a subset of motif corresponding transcription factors (PU.1, C/EBPβ, and EGR2), confirming their association with differentiation-associated epigenetic changes. We describe herein the dynamic enhancer landscape of human macrophage differentiation, highlight the power of genome-wide epigenetic profiling studies to reveal novel functional insights, and provide a unique resource for macrophage biologists.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Estefania Lozano-Velasco ◽  
Jennifer Galiano-Torres ◽  
Alvaro Jodar-Garcia ◽  
Amelia E. Aranega ◽  
Diego Franco

MicroRNAs are noncoding RNAs of approximately 22–24 nucleotides which are capable of interacting with the 3′ untranslated region of coding RNAs (mRNAs), leading to mRNA degradation and/or protein translation blockage. In recent years, differential microRNA expression in distinct cardiac development and disease contexts has been widely reported, yet the role of individual microRNAs in these settings remains largely unknown. We provide herein evidence of the role of miR-27 and miR-125 regulating distinct muscle-enriched transcription factors. Overexpression of miR-27 leads to impair expression ofMstnandMyocdin HL1 atrial cardiomyocytes but not in Sol8 skeletal muscle myoblasts, while overexpression of miR-125 resulted in selective upregulation ofMef2din HL1 atrial cardiomyocytes and downregulation in Sol8 cells. Taken together our data demonstrate that a single microRNA, that is, miR-27 or miR-125, can selectively upregulate and downregulate discrete number of target mRNAs in a cell-type specific manner.


2011 ◽  
Vol 22 (1) ◽  
pp. 9-24 ◽  
Author(s):  
B.-K. Lee ◽  
A. A. Bhinge ◽  
A. Battenhouse ◽  
R. M. McDaniell ◽  
Z. Liu ◽  
...  

Author(s):  
Brittany Cain ◽  
Brian Gebelein

Metazoans differentially express multiple Hox transcription factors to specify diverse cell fates along the developing anterior-posterior axis. Two challenges arise when trying to understand how the Hox transcription factors regulate the required target genes for morphogenesis: First, how does each Hox factor differ from one another to accurately activate and repress target genes required for the formation of distinct segment and regional identities? Second, how can a Hox factor that is broadly expressed in many tissues within a segment impact the development of specific organs by regulating target genes in a cell type-specific manner? In this review, we highlight how recent genomic, interactome, and cis-regulatory studies are providing new insights into answering these two questions. Collectively, these studies suggest that Hox factors may differentially modify the chromatin of gene targets as well as utilize numerous interactions with additional co-activators, co-repressors, and sequence-specific transcription factors to achieve accurate segment and cell type-specific transcriptional outcomes.


Blood ◽  
2021 ◽  
Author(s):  
Bon Q Trinh ◽  
Simone Ummarino ◽  
Yanzhou Zhang ◽  
Alexander K Ebralidze ◽  
Mahmoud A Bassal ◽  
...  

The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA- and DNA-interactions with the broadly expressed transcription factor RUNX1, we identified the long noncoding RNA LOUP. This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia, wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell type-specific RNAs and transcription factors as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.


2020 ◽  
Author(s):  
Bon Q. Trinh ◽  
Simone Ummarino ◽  
Alexander K. Ebralidze ◽  
Emiel van der Kouwe ◽  
Mahmoud A. Bassal ◽  
...  

ABSTRACTThe mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA- and DNA-interactions with the broadly expressed transcription factor RUNX1, we identified the long noncoding RNA LOUP. This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia, wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell type-specific RNAs and transcription factors as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.KEY POINTSlncRNA LOUP coordinates with RUNX1 to induces PU.1 long-range transcription, conferring myeloid differentiation and inhibiting cell growth.RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression in t(8;21) AML.


Sign in / Sign up

Export Citation Format

Share Document