scholarly journals Soil enzymes are preferentially associated with larger particles in highly organic Arctic tundra soils

Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jane Martinez ◽  
Jennie McLaren ◽  
Craig E. Tweedie ◽  
Anthony Darrouzet-Nardi

Microbial processes, including extracellular enzyme (exoenzyme) production, are a major driver of decomposition and a current topic of interest in Arctic soils due to the effects of climate warming. While enzyme activity levels are often assessed, we lack information on the specific location of these exoenzymes within the soil matrix. Identifying the locations of different soil enzymes is needed to improve our understanding of microbial and overall ecosystem function. Using soil obtained from Utqiaġvik, Alaska, our objectives in the study are (1) to measure the activity of enzymes in soil pore water, (2) to examine the distribution of activity among soil particle size fractions using filtration, and (3) to cross these particle size fraction analyses with disruption techniques (blending to shred and sonication to further separate clumped/aggregated soil materials) to assess how tightly bound the enzymes are to the particles. The results of the soil pore water assays showed little to no enzyme activity (<0.05 nmol g soil–1 h–1), suggesting that enzymes are not abundant in soil pore water. In the soil cores, we detected activity for most of the hydrolytic enzymes, and there were clear differences among the particle size and disruption treatments. Higher activities in unfiltered and 50-µm filters relative to much finer 2-µm filters suggested that the enzymes were preferentially associated with larger particles in the soil, likely the organic material that makes up the bulk of these Arctic soils. Furthermore, in the sonication + blending treatment with no filter, 5 of 6 hydrolytic enzymes showed higher activity compared to blending only (and much higher than sonication only), further indicating that enzyme–substrate complexes throughout the organic matter component of the soil matrix are the sites of hydrolytic enzyme activity. These results suggest that the enzymes are likely bound to either the producing microbes, which are bound to the substrates, or directly to the larger organic substrates they are decomposing. This close-proximity binding may potentially minimize the transport of decomposition products away from the microbes that produce them.

1998 ◽  
Vol 37 (4-5) ◽  
pp. 335-343 ◽  
Author(s):  
Rajeev Goel ◽  
Takashi Mino ◽  
Hiroyasu Satoh ◽  
Tomonori Matsuo

Enzymatic hydrolysis under different electron acceptor conditions in nutrient removal activated sludge treatment processes is a weak link in the Activated Sludge Model no. 2 (Henze et al., 1995). An experimental study was undertaken to gain insight into the hydrolysis process with specific focus on hydrolysis kinetics and rates under different electron acceptor conditions. Two pure cultures, Bacillus amyloliquefaciens (Gram positive) and Pseudomonas saccharophila (Gram negative) were chosen for the study. In addition, activated sludge grown in an anaerobic-aerobic system was tested for enzymatic activity using starch as the model substrate. The hydrolytic enzymes were found to be released into the bulk in pure cultures whereas the enzyme activity was found to be mainly associated with the cell surfaces in activated sludge. Further, it was observed that the development of the hydrolytic enzyme system in Bacillus amyloliquefaciens and P. saccharophila is strongly suppressed under anoxic and anaerobic conditions. However, the effect of anaerobic and aerobic incubation on hydrolytic enzyme activity in activated sludge was found to be small. Starch hydrolysis kinetic data from batch experiments with activated sludge followed substrate saturation kinetics that were linear with biomass concentration. Finally, the similar hydrolytic enzyme activities observed under anaerobic and aerobic phases of a sequencing batch reactor are explained by considering the aspects of enzyme location and enzyme system development under aerobic and anaerobic phases. It is proposed that the floc bound enzymes are recycled in a single sludge system so that an equilibrium exists between enzyme loss and synthesis at steady state.


1971 ◽  
Vol 103 (3) ◽  
pp. 454-457 ◽  
Author(s):  
Hans Laufer ◽  
Ki Ssu Schin

AbstractChanges in the hydrolytic enzymes, ribonuclease and acid phosphatase were investigated in the salivary gland of Chironomus tentans since these lysosomal enzymes may participate in hormonally stimulated tissue breakdown. Quantitative assays revealed 9- and 12-fold increases in the specific activity of these enzymes during pupation while the protein content of the gland was decreasing. These increases cannot be accounted for by decreased protein but may represent an activation, accumulation, or synthesis which seems to be important in gland breakdown at metamorphosis.


2006 ◽  
Author(s):  
Stephen W. Webb ◽  
James M. Phelan ◽  
Teklu Hadgu ◽  
Joshua S. Stein ◽  
Cedric M. Sallaberry

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 355
Author(s):  
Katarzyna Szopka ◽  
Iwona Gruss ◽  
Dariusz Gruszka ◽  
Anna Karczewska ◽  
Krzysztof Gediga ◽  
...  

This study examined the effects of waterlogging and forest litter introduced to soil on chemical properties of soil pore water and ecotoxicity of soils highly enriched in As. These effects were examined in a 21-day incubation experiment. Tested soil samples were collected from Złoty Stok, a historical centre of arsenic and gold mining: from a forested part of the Orchid Dump (19,600 mg/kg As) and from a less contaminated site situated in a neighboring forest (2020 mg/kg As). An unpolluted soil was used as control. The concentrations of As, Fe and Mn in soil pore water were measured together with a redox potential Eh. A battery of ecotoxicological tests, including a bioassay with luminescence bacteria Vibrio fischeri (Microtox) and several tests on crustaceans (Rapidtox, Thamnotox and Ostracodtox tests), was used to assess soil ecotoxicity. The bioassays with crustaceans (T. platyurus, H. incongruens) were more sensitive than the bacterial test Microtox. The study confirmed that the input of forest litter into the soil may significantly increase the effects of toxicity. Waterlogged conditions facilitated a release of As into pore water, and the addition of forest litter accelerated this effect thus causing increased toxicity.


Polar Biology ◽  
2011 ◽  
Vol 34 (12) ◽  
pp. 2007-2023 ◽  
Author(s):  
Colleen T. E. Kellogg ◽  
Shelly D. Carpenter ◽  
Alisha A. Renfro ◽  
Amélie Sallon ◽  
Christine Michel ◽  
...  

2015 ◽  
Vol 38 (12) ◽  
pp. 1877-1884
Author(s):  
Alberto Gabino Martínez-Gutiérrez ◽  
Angélica Bautista Cruz ◽  
Cirenio Escamirosa Tinoco ◽  
Juana Yolanda López Cruz ◽  
Miguel Urrestarazu

2013 ◽  
Vol 34 (3) ◽  
pp. 253-267 ◽  
Author(s):  
Mauro Tropeano ◽  
Susana Vázquez ◽  
Silvia Coria ◽  
Adrián Turjanski ◽  
Daniel Cicero ◽  
...  

AbstractCold−adapted marine bacteria producing extracellular hydrolytic enzymes are important for their industrial application and play a key role in degradation of particulate organic matter in their natural environment. In this work, members of a previously−obtained protease−producing bacterial collection isolated from different marine sources from Potter Cove (King George Island, South Shetlands) were taxonomically identified and screened for their ability to produce other economically relevant enzymes. Eighty−eight proteolytic bacterial isolates were grouped into 25 phylotypes based on their Amplified Ribosomal DNA Restriction Analysis profiles. The sequencing of the 16S rRNA genes from representative isolates of the phylotypes showed that the predominant culturable protease−producing bacteria belonged to the class Gammaproteobacteria and were affiliated to the genera Pseudomonas, Shewanella, Colwellia, and Pseudoalteromonas, the latter being the predominant group (64% of isolates). In addition, members of the classes Actinobacteria, Bacilli and Flavobacteria were found. Among the 88 isolates screened we detected producers of amylases (21), pectinases (67), cellulases (53), CM−cellulases (68), xylanases (55) and agarases (57). More than 85% of the isolates showed at least one of the extracellular enzymatic activities tested, with some of them producing up to six extracellular enzymes. Our results confirmed that using selective conditions to isolate producers of one extracellular enzyme activity increases the probability of recovering bacteria that will also produce additional extracellular enzymes. This finding establishes a starting point for future programs oriented to the prospecting for biomolecules in Antarctica.


ACS Sensors ◽  
2018 ◽  
Vol 3 (8) ◽  
pp. 1489-1498 ◽  
Author(s):  
Sadaf Charkhabi ◽  
Andee M. Beierle ◽  
Marshall D. McDaniel ◽  
Nigel F. Reuel

Sign in / Sign up

Export Citation Format

Share Document