scholarly journals Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research

Elem Sci Anth ◽  
2018 ◽  
Vol 6 ◽  
Author(s):  
Allen S. Lefohn ◽  
Christopher S. Malley ◽  
Luther Smith ◽  
Benjamin Wells ◽  
Milan Hazucha ◽  
...  

Assessment of spatial and temporal variation in the impacts of ozone on human health, vegetation, and climate requires appropriate metrics. A key component of the Tropospheric Ozone Assessment Report (TOAR) is the consistent calculation of these metrics at thousands of monitoring sites globally. Investigating temporal trends in these metrics required that the same statistical methods be applied across these ozone monitoring sites. The nonparametric Mann-Kendall test (for significant trends) and the Theil-Sen estimator (for estimating the magnitude of trend) were selected to provide robust methods across all sites. This paper provides the scientific underpinnings necessary to better understand the implications of and rationale for selecting a specific TOAR metric for assessing spatial and temporal variation in ozone for a particular impact. The rationale and underlying research evidence that influence the derivation of specific metrics are given. The form of 25 metrics (4 for model-measurement comparison, 5 for characterization of ozone in the free troposphere, 11 for human health impacts, and 5 for vegetation impacts) are described. Finally, this study categorizes health and vegetation exposure metrics based on the extent to which they are determined only by the highest hourly ozone levels, or by a wider range of values. The magnitude of the metrics is influenced by both the distribution of hourly average ozone concentrations at a site location, and the extent to which a particular metric is determined by relatively low, moderate, and high hourly ozone levels. Hence, for the same ozone time series, changes in the distribution of ozone concentrations can result in different changes in the magnitude and direction of trends for different metrics. Thus, dissimilar conclusions about the effect of changes in the drivers of ozone variability (e.g., precursor emissions) on health and vegetation exposure can result from the selection of different metrics.

2021 ◽  
Author(s):  
Inês Vieira ◽  
Hans Verbeeck ◽  
Félicien Meunier ◽  
Marc Peaucelle ◽  
Lodewijk Lefevre ◽  
...  

<p>Tropospheric ozone is a greenhouse gas, and high tropospheric ozone levels can directly impact plant growth and human health. In the Congo basin, simulations predict high ozone concentrations, induced by high ozone precursor (VOC and NOx) concentrations and high solar irradiation, which trigger the chemical reactions that form ozone. Additionally, biomass burning activities are widespread on the African continent, playing a crucial role in ozone precursor production. How these potentially high ozone levels impact tropical forest primary productivity remains poorly understood, and field-based ozone monitoring is completely lacking from the Congo basin. This study intends to show preliminary results from the first full year of in situ measurements of ozone concentration in the Congo Basin (i.e., Yangambi, Democratic Republic of the Congo). We show the relationships between meteorological variables (temperature, precipitation, radiation, wind direction and speed), fire occurrence (derived from remote sensing products) and ozone concentrations at a new continuous monitoring station in the heart of the Congo Basin. First results show higher daily mean ozone levels (e.g. 43 ppb registered in January 2020) during dry season months (December-February). We identify a strong diurnal cycle, where minimum values of ozone (almost near zero) are registered during night hours, and maximum values (near 100 ppb) are registered during the daytime. We also verify that around 2.5% of the ozone measurements exceeds a toxicity level (potential for ozone to damage vegetation) of 40 ppb. In the longer term, these measurements should improve the accuracy of future model simulations in the Congo Basin and will be used to assess the impact of ozone on the tropical forest’s primary productivity.</p>


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1798
Author(s):  
Xu Wu ◽  
Su Li ◽  
Bin Liu ◽  
Dan Xu

The spatio-temporal variation of precipitation under global warming had been a research hotspot. Snowfall is an important part of precipitation, and its variabilities and trends in different regions have received great attention. In this paper, the Haihe River Basin is used as a case, and we employ the K-means clustering method to divide the basin into four sub-regions. The double temperature threshold method in the form of the exponential equation is used in this study to identify precipitation phase states, based on daily temperature, snowfall, and precipitation data from 43 meteorological stations in and around the Haihe River Basin from 1960 to 1979. Then, daily snowfall data from 1960 to 2016 are established, and the spatial and temporal variation of snowfall in the Haihe River Basin are analyzed according to the snowfall levels as determined by the national meteorological department. The results evalueted in four different zones show that (1) the snowfall at each meteorological station can be effectively estimated at an annual scale through the exponential equation, for which the correlation coefficient of each division is above 0.95, and the relative error is within 5%. (2) Except for the average snowfall and light snowfall, the snowfall and snowfall days of moderate snow, heavy snow, and snowstorm in each division are in the order of Zones III > IV > I > II. (3) The snowfall and the number of snowfall days at different levels both show a decreasing trend, except for the increasing trend of snowfall in Zone I. (4) The interannual variation trend in the snowfall at the different levels are not obvious, except for Zone III, which shows a significant decreasing trend.


Sign in / Sign up

Export Citation Format

Share Document