scholarly journals Tissue tension and not interphase cell shape determines cell division orientation in the Drosophila follicular epithelium

2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Tara M Finegan ◽  
Daxiang Na ◽  
Christian Cammarota ◽  
Austin V Skeeters ◽  
Tamás J Nádasi ◽  
...  
2017 ◽  
Author(s):  
Tara M. Finegan ◽  
Daxiang Na ◽  
Austin V. Skeeters ◽  
Nicole S. Dawney ◽  
Patrick W. Oakes ◽  
...  

AbstractWe investigated the relationship between proliferation and tissue topology in an epithelial tissue undergoing elongation. We found that cell division is not required for elongation of the early Drosophila follicular epithelium, but does drive the tissue towards optimal geometric packing. To increase tissue regularity, cell divisions are oriented in the planar axis, along the direction of tissue expansion. Planar division orientation is governed by apico-cortical tension, which aligns with tissue expansion but not with interphase cell shape elongation. Hertwig’s Rule, which holds that cell elongation determines division orientation, is therefore broken in this tissue. We tested whether this observation could be explained by anisotropic activity of the conserved Pins/Mud spindle-orienting machinery, which controls division orientation in the apical-basal axis. We found that Pins/Mud does not participate in planar division orientation. Rather, tension translates into planar division orientation in a manner dependent on Canoe/Afadin, which links actomyosin to adherens junctions. These findings demonstrate that division orientation in different axes - apical-basal and planar - is controlled by distinct, independent mechanisms in a proliferating epithelium.Summary StatementRegularity in a proliferating epithelium requires cells to divorce division orientation from interphase shape, which they accomplish by using distinct mechanisms to orient divisions in the apical-basal and planar axes.


Development ◽  
1975 ◽  
Vol 34 (1) ◽  
pp. 265-277
Author(s):  
J. R. Downie

Since their discovery, cytoplasmic microtubules have been much studied in the context of cell movement and cell shape change. Much of the work has used drugs, particularly colchicine and its relatives, which break down microtubules — the so-called anti-tubulins. Colchicine inhibits the orientated movements of many cell types in vitro, and disrupts cell shape change in several morphogenetic situations. The investigation reported here used chick blastoderm expansion in New culture in an attempt to quantify the colchicine effect on orientated cell movement. However, although colchicine could halt blastoderm expansion entirely, a simple interpretation was not possible. (1) Colchicine at concentrations capable of blocking mitosis, and of disrupting all or most of the cytoplasmic microtubules of the cells studied, inhibited blastoderm expansion, often resulting in an overall retraction of the cell sheet. (2) Though blastoderm expansion does normally involve considerable cell proliferation, the colchicine effect could not be ascribed to a block on cell division since aminopterin, which stops cell division without affecting microtubules, did not inhibit expansion. (3) Blastoderm expansion is effected by the locomotion of a specialized band of edge cells at the blastoderm periphery. These are the only cells normally attached to the vitelline membrane — the substrate for expansion. When most of the blastoderm was excised, leaving the band of edge cells, and the cultures then treated with colchicine, expansion occurred normally. The colchicine effect on blastoderm expansion could not therefore be ascribed to a direct effect on the edge cells. (4) An alternative site of action of the drug is the remaining cells of the blastoderm. These normally become progressively flatter as expansion proceeds. If flattening in these cells is even partially dependent on their cytoplasmic microtubules, disruption of these microtubules might result in the inherent contractility of the cells resisting and eventually halting edge cell migration. That cell shape in these cells is dependent on microtubules was demonstrated by treating flat blastoderm fragments with colchicine. On incubation, the area occupied by these fragments decreased by 25–30 % more than controls. The significance of these results in the general context of orientated cell movements and cell shape determination is discussed, with particular emphasis on the analogous system of Fundulus epiboly.


2019 ◽  
Author(s):  
Clint S. Ko ◽  
Prateek Kalakuntla ◽  
Adam C. Martin

AbstractDuring development, coordinated cell shape changes and cell divisions sculpt tissues. While these individual cell behaviors have been extensively studied, how cell shape changes and cell divisions that occur concurrently in epithelia influence tissue shape is less understood. We addressed this question in two contexts of the early Drosophila embryo: premature cell division during mesoderm invagination, and native ectodermal cell divisions with ectopic activation of apical contractility. Using quantitative live-cell imaging, we demonstrated that mitotic entry reverses apical contractility by interfering with medioapical RhoA signaling. While premature mitotic entry inhibits mesoderm invagination, which relies on apical constriction, mitotic entry in an artificially contractile ectoderm induced ectopic tissue invaginations. Ectopic invaginations resulted from medioapical myosin loss in neighboring mitotic cells. This myosin loss enabled non-mitotic cells to apically constrict through mitotic cell stretching. Thus, the spatial pattern of mitotic entry can differentially regulate tissue shape through signal interference between apical contractility and mitosis.


2019 ◽  
Vol 30 (19) ◽  
pp. 2458-2468 ◽  
Author(s):  
Jingchen Li ◽  
Longcan Cheng ◽  
Hongyuan Jiang

Cell division orientation plays an essential role in tissue morphogenesis and cell fate decision. Recent studies showed that either cell shape or adhesion geometry can regulate the orientation of mitotic spindles and thereby the cell division orientation. However, how they together regulate the spindle orientation remains largely unclear. In this work, we use a general computational model to investigate the competitive mechanism of determining the spindle orientation between cell shape and intercellular adhesion in epithelial cells. We find the spindle orientation is dominated by the intercellular adhesion when the cell shape anisotropy is small, but dominated by the cell shape when the shape anisotropy is large. A strong adhesion and moderate adhesive size can ensure the planar division of epithelial cells with large apico-basal elongation. We also find the spindle orientation could be perpendicular to the adhesive region when only one side of the cell is adhered to an E-cadherin–coated matrix. But after the cell is compressed, the spindle orientation is governed by the cell shape and the spindle will be parallel to the adhesive region when the cell shape anisotropy is large. Finally, we demonstrate the competition between cell shape and tricellular junctions can also effectively regulate the spindle orientation.


2003 ◽  
Vol 185 (11) ◽  
pp. 3288-3296 ◽  
Author(s):  
Ivana Jankovic ◽  
Marco Ventura ◽  
Valerie Meylan ◽  
Martine Rouvet ◽  
Marina Elli ◽  
...  

ABSTRACT Aggregation-promoting factor (APF) was originally described as a protein involved in the conjugation and autoaggregation of Lactobacillus gasseri 4B2, whose corresponding apf gene was cloned and sequenced. In this report, we identified and sequenced an additional apf gene located in the region upstream of the previously published one. Inactivation of both apf genes was unsuccessful, indicating that APF function may be essential for the cell. Overproduction of APF proteins caused drastic alteration in the cell shape of this strain. These cells were irregular, twisted, enlarged, and tightly bound in unbreakable clumps of chains. Down-regulation of APF synthesis was achieved by cloning of the apf2 promoter region on a high-copy-number plasmid, which recruited a putative apf activator. As a consequence, the shape of the corresponding recombinant cells was elongated (filamentous) and cell division sites were no longer visible. None of the induced changes in APF production levels was clearly correlated with modifications of the aggregation phenotype. This report shows, for the first time, that APF proteins are mainly critical for L. gasseri 4B2 cell shape maintenance.


2009 ◽  
Vol 19 (17) ◽  
pp. R823-R827 ◽  
Author(s):  
Matthieu Piel ◽  
Phong T. Tran

2004 ◽  
Vol 10 (S02) ◽  
pp. 162-163
Author(s):  
Isabelle Loiodice ◽  
Marcel E. Janson ◽  
Jamye Staub ◽  
Thanuja Gangi-Setty ◽  
Nam P. Nguyen ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


2017 ◽  
Vol 2017.52 (0) ◽  
pp. 187
Author(s):  
Yoshihiro Oda ◽  
Yohsuke Imai ◽  
Keiko Numayama-Tsuruta ◽  
Takuji Ishikawa

1973 ◽  
Vol 56 (2) ◽  
pp. 340-359 ◽  
Author(s):  
G. Benjamin Bouck ◽  
David L. Brown

In the first of two companion papers which attempt to correlate microtubules and their nucleating sites with developmental and cell division patterns in the unicellular flagellate, Ochromonas, the distribution of cytoplasmic and mitotic microtubules and various kinetosome-related fibers are detailed. Of the five kinetosome-related fibers, which have been found in Ochromonas, two, the kineto-beak fibers and the rhizoplast fibers are utilized as attachment sites for distinct groups of microtubules. The set of microtubules attached to the kineto-beak fibers apparently shape the anterior beak region of the cell whereas the rhizoplast microtubules appear to extend into and shape the tail in vegetative cells. In mitotic cells a rhizoplast is found at each spindle pole apparently serving as foci for the spindle microtubules. These findings are discussed in relation to the less well defined attachment sites for vegetative and mitotic microtubules in other kinds of cells. It is noted that the effects of depolymerizing microtubules in vivo might be easily quantitated in whole populations since no external wall or pellicle contributes to the maintenance or the biogenesis of the characteristic cell form of Ochromonas.


Sign in / Sign up

Export Citation Format

Share Document