scholarly journals The role of regulatory neuropeptides and neurotrophic factors in asthma pathophysiology

2019 ◽  
Vol 8 (4) ◽  
Author(s):  
Oxana Yu. Kytikova ◽  
Tatyana P. Novgorodtseva ◽  
Marina V. Antonyuk ◽  
Tatyana A. Gvozdenko

In the last decade, the attention of scientists in the field of biomedicine is focused on studying the relationship between the immunological and neurogenic components of the inflammatory response and their contribution to the pathophysiology of allergic inflammation in asthma. The review is devoted to detailing the mechanism of neurogenic inflammation involving regulatory neuropeptides (substance P, vasoactive intestinal peptide, calcitonin gene-related peptide) in the pathogenesis of bronchial hyperreactivity in asthma. The role of neurotrophic growth factors (nerve growth factor, brain-derived neurotrophic factor) in the regulation of remodeling of bronchi in asthma has been analyzed. The study of neuroimmune mechanisms in the pathophysiology of asthma will it possible to find new therapeutic targets in this research area.

1987 ◽  
Vol 80 (9) ◽  
pp. 591-593
Author(s):  
A J Barrett

At this meeting of the RSM's Section of Pathology, the regulation of haemopoietic stem cells and growth factors regulating various cell lines were described, and the role of oncogenes, platelet-derived growth factor and nerve growth factor in growth regulation was discussed.


2002 ◽  
Vol 10 (1) ◽  
pp. 3-34
Author(s):  
Stephen W. Carmichael

Since the discovery of nerve growth factor, it has been thought that neurotrophic factors are released or secreted from target cells. However, more recently it has been suggested that a specific neurotrophic factor known as brain-derived neurotrophic factor (BDNF) may reach target cells directly from pre-synaptic axons. It has not been known how these molecules get from the neuron in which they are produced to the target cells. Keigo Kohara, Akihiko Kitamura, Mieko Morishima, and Tadaharu Tsumoto have demonstrated that BDNF is transported anterogradely from presynaptic neurons to target neurons.


1990 ◽  
Vol 1 (10) ◽  
pp. 741-746 ◽  
Author(s):  
R Lim ◽  
W X Zhong ◽  
A Zaheer

Recombinant human glia maturation factor beta (GMF-beta) reversibly inhibits the proliferation of neoplastic cells in culture by arresting the cells in the G0/G1 phase. This phenomenon is not target-cell specific, as neural and nonneural cells are equally inhibited. When tested simultaneously, GMF-beta suppresses the mitogenic effect of acidic fibroblasts growth factor (aFGF), but the two are synergistic in promoting the morphologic differentiation of cultured astrocytes. GMF-beta also counteracts the growth-stimulating effect of pituitary extract and cholera toxin on Schwann cells. The results underscore the regulatory role of GMF-beta and its intricate interaction with the mitogenic growth factors.


Sign in / Sign up

Export Citation Format

Share Document