Performance and emission study of sesbania aculeate biodiesel in a VCR diesel engine

2020 ◽  
Vol 14 (4) ◽  
pp. 7551-7568
Author(s):  
Dandu Mallesham ◽  
J. Krishnaraj ◽  
CH. Ravikiran

The increasing energy demand and pollution due to fossil fuels influence the necessity of finding a appropriate alternative fuel for a cleaner environment and to sustain the usage of diesel engines in the automobile sector. This research focuses on such exploration of new alternative fuel (biodiesel) and to study its effect on emission and the performance parameters at a 1500 rpm constant speed on a 4-stroke, single-cylinder, variable compression ratio (VCR) diesel engine. The biodiesel from the sesbania aculeate seed oil is produced through the transesterification process.  The blends of sesbania aculeate oil methyl ester (SAOME) with diesel mixture SAOME10, SAOME20, SAOME30, and SAOME40 are used as fuels at various engine loads (20% to 100%) and different compression ratios (CR) (16.5, 17.5 and 18.5). The emission and performance indicators of the proposed biodiesel are analyzed and an evaluation is made with diesel. The experimental outcomes demonstrate that for SAOME20, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) are respectively 12.3% lesser and 8.21% higher than diesel under peak load at CR 18.5. Also the experimental investigation confirms a significant emission decrease in NOX, HC, and CO when there is an increase in CR and load.

In this contemporary era it is mandatory to increasing the usage of non edible biodiesel to replace the fossil fuels. This non edible biodiesels are produced from vegetable oils which is clean burning and renewable. This paper deals with the performance and emission characteristics on diesel engine with blends of Castor oil as biodiesel. Castor oil biodiesel is prepared by the use of adding 1% v/v H2SO4 after the transesterification process. The engine tests were performed with various blends B20, B40, B60 on a single cylinder, 4-stroke, diesel engine. The result shows Higher performance and lower emissions for B20 than the diesel and other blends. The brake thermal efficiency is higher than the diesel and CO, HC and NOX emissions were 22%, 8.4%, and 21% lesser than that of diesel.


Author(s):  
K. R. Balasubramanian ◽  
R. Anand ◽  
B. Venkatesh ◽  
G. R. Kannan ◽  
S. P. Sivapirakasam

The world needs an alternative fuels that could maintain the world running on its wheels due to the increasing energy demand and uncertainty in availability of the fossil fuels. The present investigation analyzes the scope of utilizing the Deccan hemp oil based biodiesel derived from jute seed as an alternative to the diesel. Experimental investigation was carried out at diesel engine with different loads from 0% to 100% and 10% overload condition under a constant speed of 1500 rpm. It was found that the reduction in brake thermal efficiency and higher brake specific fuel consumption was observed with biodiesel in comparison with diesel. The carbon monoxide (CO), carbon-dioxide (CO2), unburnt hydrocarbon (HC) and nitric oxide (NO) emissions for Deccan hemp oil based biodiesel were reduced by 0.2% vol, 1.6% vol, 62.5%, 36.84% whereas slightly higher smoke emission was observed when compared to diesel fuel. These studies revealed that Deccan hemp oil based biodiesel can be used as a fuel in compression ignition engine without any engine modifications.


Author(s):  
Sumita Debbarma ◽  
Biplab Das ◽  
Jagadish

Biodiesel has been immersed as an immediate alternative of fossil fuels for diesel engines. However, choosing a good combination of biodiesel blends based on both performance and emission depend on various factors. The chapter presents the modeling and optimization of performance and emissions parameters of a biodiesel-run diesel engine using an integrated MCDM approach. The integrated MCDM approach consists of entropy with MCRA method. An experimental case study on performance and emission study of diesel engine is considered to show the modeling capability of the proposed method. The results show that trail no. 4 yields the optimal setting compare to the other combinations. The trail no. 4 gives optimum operating condition such as 85-90% load and PB10 which provides optimum performance parameters like higher brake thermal efficiency (BTE), lower brake-specific energy consumption (BSEC), lower carbon monoxide (CO), lower hydro carbon (HC), and lower oxides of nitrogen (NOx), respectively.


Author(s):  
H. Arunkumar ◽  
S.H. Manjunath ◽  
N. Varunkumar Reddy

Rubber seed oil (RSO), derived from the seeds of Hevea brasiliensis, is an exciting alternative with great potential for use in biodiesel production. Furthermore, it can be injected directly into an internal combustion engine, blended with diesel derived from fossil fuels. The present work deals with the potential estimation of waste cooking oil (WCO) bio diesel and RSO biodiesel, characterization of biodiesel, performance and exhaust analysis of biodiesel blends in DI diesel engine. The best results in terms of performance and emission are obtained for B10 blend which resulted in highest brake thermal efficiency of 19.2 % at 80% loading. The NOx emissions are maximum for B20 blend.


Author(s):  
Ajay Chandravanshi ◽  
◽  
Shrikant Pandey ◽  
Rakesh Kumar Malviya ◽  
◽  
...  

Utilization of biodiesel results in lower emissions of hydrocarbons, carbon mono oxide, and smoke. But with the use of biodiesel as fuel emission of Oxides of nitrogen increases along with this some performance parameters also deteriorated. In the present investigation, the fact has been used that, the magnetization of fuels containing hydrocarbon changes the chemical properties as well as orientation and arrangement of molecules of fuel. In this experimental investigation density and calorific values of biodiesel have been determined. In another setup of experimentation on a single-cylinder four-stroke diesel engine, observations are taken with diesel, biodiesel blend containing 20% biodiesel (BD20), and magnetized biodiesel (BD20+MF) as fuel. Results of this investigation show that, the magnetization of biodiesel is not only helpful in increasing performance parameters like brake specific fuel consumption and brake thermal efficiency but also it helps to control the emissions of carbon mono oxide, oxides of nitrogen, hydrocarbons, and smoke. Maintaining the magnetic field just before the entry of the combustion chamber on the fuel line is a little hard, due to the regular increase in temperature of the spot where magnets are kept. It is possible that, if the strength of the magnetic field is increased then, there may be further improvement in performance and engine parameters, as in this investigation only 4000 Gauss Magnetic field has been used.


Author(s):  
Tolgahan Kaya ◽  
Osman Akın Kutlar ◽  
Ozgur Oguz Taskiran

In this paper, the effects of biodiesel on performance and emission of the current and new-coming regulation cycles, namely the New European Driving Cycle (NEDC) and the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), were investigated by conducting tests on a passenger car, Euro-5 Ford Fiesta, equipped with a 1.5-liter diesel engine. In a two-axle chassis dynamometer test bed, NEDC and WLTC were performed with pure diesel and biodiesel-to-diesel blend (30% biodiesel, 70% diesel in volume). A substantial reduction in CO, HC, and PN emissions was observed for both the NEDC and WLTC when biodiesel was used. Besides, it was found that the WLTC has higher load and velocity profile compared to the NEDC. Moreover, lower CO, HC, and PN emissions were observed with B30 fuel under WLTC compared to the NEDC. Nevertheless, slightly higher CO2 and substantially higher NOx emissions were observed for the WLTC compared to the NEDC.


Author(s):  
R.A. RaajKumar ◽  
S. Sriram ◽  
A.S. DivakarShetty ◽  
Sandeep Koundinya

As the years are passing by, the number of vehicles used for transportation is increasing. Due to this the environment is degrading and also the fossil fuels are depleting. This paper presents the performance and emission study on diesel engine using waste cooking oil with methanol as additive in various proportions. The properties such as the flash point, fire point, kinematic viscosity and the calorific values of the blends with and without additive are determined. Then all the biodiesel blends are used as fuel separately in the diesel engine. The engine performance as well as emission characteristics have been determined and compared at different blends. The blends with additive showed better properties and reduction in emission characteristics compared to diesel. The emission of CO is decreasing with increasing waste cooking oil and methanol quantity in the blends. Fuel consumption was more for the higher percentage blends with respect to increasing brake power. The emission of un-burnt hydrocarbon and oxides of nitrogen are reduced significantly with addition of methanol to fuel mixture due to higher oxygen and heat of vaporization.


Author(s):  
M.A. Asokan ◽  
S. Senthur Prabu ◽  
S. Prathiba ◽  
Shrey Mishra ◽  
Harsh Mittal ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 168781402098840
Author(s):  
Mohammed S Gad ◽  
Sayed M Abdel Razek ◽  
PV Manu ◽  
Simon Jayaraj

Experimental work was done to examine the impact of diesel fuel with alumina nanoparticles on combustion characteristics, emissions and performance of diesel engine. Alumina nanoparticles were mixed with crude diesel in various weight fractions of 20, 30, and 40 mg/L. The engine tests showed that nano alumina addition of 40 ppm to pure diesel led to thermal efficiency enhancement up to 5.5% related to the pure diesel fuel. The average specific fuel consumption decrease about neat diesel fuel was found to be 3.5%, 4.5%, and 5.5% at dosing levels of 20, 30, and 40 ppm, respectively at full load. Emissions of smoke, HC, CO, and NOX were found to get diminished by about 17%, 25%, 30%, and 33%, respectively with 40 ppm nano-additive about diesel operation. The smaller size of nanoparticles produce fuel stability enhancement and prevents the fuel atomization problems and the clogging in fuel injectors. The increase of alumina nanoparticle percentage in diesel fuel produced the increases in cylinder pressure, cylinder temperature, heat release rate but the decreases in ignition delay and combustion duration were shown. The concentration of 40 ppm alumina nanoparticle is recommended for achieving the optimum improvements in the engine’s combustion, performance and emission characteristics.


Sign in / Sign up

Export Citation Format

Share Document