scholarly journals Speed and Power Consumption Comparison between DES and AES Algorithm in Arduino

2019 ◽  
Vol 6 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Arcelina Sukiatmodjo ◽  
YB Dwi Setianto

Telemedicine is commonly used to check or diagnose patients from a long distance. Its application is often combined with sensors as needed, but for delivery, a cryptography algorithm is needed so the data sent safely, illegible, and can not be changed by unauthorized people. Besides that, the algorithm must be light, fast and use less power. In this study, a comparison of the Data Encryption Standard (DES) and Advanced Encryption Standard (AES) algorithms will be implemented in the encryption module. Data from the sensor encrypted and sent to the server. The time and power consumption by DES will be compared with AES. From this research, we can conclude that the encryption time of AES is faster than DES. The average difference speed is 33413 microseconds. Then the power consumption by AES and DES does not have any significant difference, and the addition of sensors causes additional power as well.

Author(s):  
Mahadi Winafil ◽  
Sinar Sinurat ◽  
Taronisokhi Zebua

Digital images that are personal and confidential are very vulnerable to wiretapping by irresponsible parties. Especially if distributed via the internet network such as on Facebook, WhatsApp and e-mail chat based applications. Images that are sent sometimes are often confidential images and must be maintained. In order to maintain the security of digital images can be done by utilizing cryptographic techniques. Cryptographic techniques can secure digital images by changing pixel values from digital images so as to produce different pixel values from the original image to be secured. This research will use AES 128 bit and Triple DES methods for encryption and decryption of digital images on client-server based applications. The results of the encryption AES algorithm will be re-encrypted with the Triple DES Algorithm so as to produce pixel values that are far different from the original pixel values. Keywords: cryptography, image, AES, Triple DES


Author(s):  
Zolidah Kasiran ◽  
Hikma Farah Ali ◽  
Noorhayati Mohamed Noor

The advancement of the data communication technologies has increased the traffic of data exchange over the internet and at the same time created the opportunity of data attack by various party.  This paper present  Time Performance Analysis Of Advanced Encryption Standard And Data Encryption Standard  in Data Security Transaction<strong>. </strong>In this study we proposed an AES algorithm with  different key size, and different file format. Our aim is to safely to transfer the file for using the AES algorithm. Proposed algorithm has done by analyzing the different time taken for both AES and DES, experiments were done by three different file  format which were text, image, and voice. Each file format type was tested with five different file sizes. The result of each experiments were analysed and it was confirmed that  the AES algorithm have better performance in term of time taken as compared to DES.


2019 ◽  
Vol 8 (4) ◽  
pp. 11969-11972

now a day’s VLSI is developing technology as predicted by Moors law which is drastically increasing as per demand one of that is data security for efficient processing so, data encryption and decryption are major play in security for this an advanced encryption standard is there which uses reconfigurable hardware process in this paper field programmable gate arrays (FPGAs) kit of Xilinx based platform in which spartan3E EDK kit is used. Here we analyze the speed of AES algorithm by using this EDK environment where obvious high speed is considerable and with power consumption and throughput exemptions. With micro blaze soft core processer we implement our algorithm of AES by using c coding we configure the hardware structure. EDK tool with one round operation is done and both area utilization and throughput are observed as we are familiar that when area reduces power consumption also reduces.


In this paper the Advanced Encryption Standard (AES) was endorsed by the National Institute of Standards and Technology in 2001. It was intended to supplant the maturing Data Encryption Standard (DES) and be valuable for a wide scope of utilizations with differing throughput, zone, control dissemination and vitality utilization necessities .Though they are very adaptable, FPGAs are regularly less effective than Application Specific Integrated Circuits (ASICs); There have been numerous AES executions that attention on acquiring high throughput or low region use, however almost no examination done in the territory of low power or vitality productive based AES; actually, it is uncommon for assessments on power dispersal to be made by any means. This postulation introduces new effective equipment usage to those propelled encryption standard (AES) calculation. Two primary commitments are introduced in this thesis, the initial you quit offering on that one will be a secondary speed 128 odds AES encrypted, and the second person is another 32 odds AES configuration. In 1st commitment An 128 odds circle unrolled sub-pipelined AES encrypted is exhibited. In this encrypted a effective blending to those encryption methodology sub-steps will be executed following relocating them. Those second commitment displays An 32 odds AES plan. In this design, the S-BOX is actualized for inward pipelining Furthermore it is imparted the middle of those principle round and the enter development units. Also, the way development unit is actualized will fill in on the fly What's more previously, parallel with the fundamental round unit. These outlines bring attained higher FPGA (Throughput/Area) effectiveness analyzing to past AES outlines.


Author(s):  
El Adib Samir ◽  
Raissouni Naoufal

For real-time embedded applications, several factors (time, cost, power) that are moving security considerations from a function-centric perspective into a system architecture (hardware/software) design issue. The National Institute of Standards and Technology (NIST) adopts Advanced Encryption Standard (AES) as the most widely used encryption algorithm in many security applications. The AES algorithm specifies 10, 12 and 14 rounds offering different levels of security. Although the number of rounds determines the strength of security, the power consumption issue has risen recently, especially in real-time embedded systems. In this article, the authors present real time implementation of the AES encryption on the compactRIO platform for a different number of AES rounds. The target hardware is NI cRIO-9022 embedded real-time controller from National Instruments (NI). The real time encryption processing has been verified successfully. The power consumption and encryption time experimental results are presented graphically for 10, 12 and 14 rounds of processing.


Author(s):  
G. Renuka ◽  
V. Usha Shree ◽  
P. Chandra Sekhar Reddy

Encryption algorithms play a dominant role in preventing unauthorized access to important data. This paper focus on the implementations of Data Encryption Standard (DES) and Advanced Encryption Standard (AES) algorithms on Microblaze soft core Processor and also their implementations on XC6VLX240t FPGA using Verilog Hardware Description language. This paper also gives a comparison of the issues related to the hardware and software implementations of the two cryptographic algorithms.


Author(s):  
Keith M. Martin

In this chapter, we focus on symmetric encryption. We begin by identifying two different types of symmetric encryption algorithm, namely, stream and block ciphers. We discuss the basic idea behind a stream cipher and consider their properties and applications. We then introduce block ciphers. We focus on two extremely important and influential block cipher algorithms, the Data Encryption Standard and the Advanced Encryption Standard, discussing the history of their development as well as their basic design. We then introduce the modes of operation of a block cipher, explaining why different modes have been proposed. We examine in detail four of the most well-established modes of operation and their core properties, as well as classifying other modes of operation.


JURNAL UNITEK ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 34-48
Author(s):  
Ridwan Andriyanto ◽  
Khairijal Khairijal ◽  
Devit Satria

Seiring penggunaan website yang semakin luas dapat menimbulkan berbagai macam tindak kejahatan seperti pencurian, manipulasi data atau informasi penting dari suatu website oleh orang yang tidak bertanggung jawab. Dalam pemrograman web terdapat dua metode untuk mengirimkan data dari client ke server, parameter POST method dan parameter GET method. GET method request menempatkan data yang  dikirimkan  pada  URL  web  yang  dituju. hal  ini  menjadi  salah  satu kelemahan  dari  GET  method  karena  nilai variable yang dikirim menggunakan GET method dapat dilihat pada bagian URL sehingga rentan terhadap serangan SQL injection. Salah satu metode kriptografi yang dapat digunakan adalah Advanced Encryption Standard (AES). AES adalah pengganti algoritma DES (Data Encryption Standard). Hasil penelitian menunjukkan bahwa Algoritma AES dapat mengenkripsi dan mendekripsi data URL sebuah website  dengan panjang kunci yang bervariasi, yaitu 128 bit, 192 bit, dan 256 bit. sehingga  dapat  menyamarkan informasi yang terdapat pada URL, Enkripsi URL ini menghasilkan keluaran berupa URL yang tidak menampilkan variabel asli melainkan chipertext hasil enkripsi.


Sign in / Sign up

Export Citation Format

Share Document