CHANGES IN SERUM TSH LEVEL AFTER INTRAVENTRICULAR INJECTION OF VARIOUS NEUROMEDIATORS IN RATS

1978 ◽  
Vol 87 (2) ◽  
pp. 279-282 ◽  
Author(s):  
Henryk Holak ◽  
Agata Baldys ◽  
Barbara Jarzab ◽  
Antoni Wystrychowski ◽  
Jan Skrzypek

ABSTRACT The influence of various neuromediators on pituitary TSH secretion in rats has been investigated. Noradrenaline 50 μg/rat, dopamine 50 μg/rat, serotonine-creatinine-sulphate 100 μg/rat, gamma-aminobutyric acid 100 μg/rat, pilocarpine 1 mg/rat, histamine 100 μ/rat were administered into the lateral ventricle of the brain. All agents were dissolved in Parker's fluid. Two control groups of animals were given Parker's fluid and subjected to surgical manipulations, respectively. Plasma TSH level was estimated after 30 min by means of radioimmunoassay. The increase in the TSH level was observed after the injection of serotonine and noradrenaline (4.0 and 3.1 ng/ml, respectively) as compared with control group (0.7 ng/ml).

2009 ◽  
Vol 24 (5) ◽  
pp. 383-386 ◽  
Author(s):  
Cecília Maria de Carvalho Xavier Holanda ◽  
Monique Batista da Costa ◽  
Natália Chilinque Zambão da Silva ◽  
Maurício Ferreira da Silva Júnior ◽  
Vanessa Santos de Arruda Barbosa ◽  
...  

PURPOSE: Aloe vera is a tropical plant popularly known in Brazil as babosa. We have investigated the effect of aqueous extract of Aloe vera on the biodistribution of Na99mTcO4 and laboratorial parameters in Wistar rats. METHODS: Twelve animals were divided into treated and control groups. In the treated group, Aloe vera was given by gavage (5mg/mL/day) during 10 days. The control group received sorbitol by the same way and period. One hour after the last dose, we injected 0.1mL of Na99mTcO4 by orbital plexus. After 60 min, all the animals were killed. Samples were harvested from the brain, liver, heart, muscle, pancreas, stomach, femur, kidneys, blood, testis and thyroid and the percentage of radioactivity (%ATI/g) was determined. Biochemical dosages were performed. RESULTS: There was a significant increase of %ATI/g in blood, femur, kidneys, liver, stomach, testis and thyroid and also in blood levels of AST and ALT. A significant decrease in levels of glucose, cholesterol, triglycerides, creatinine and urea occurred. The statistical analyses were performed by Mann-Whitney test and T-Student test (p<0.05). CONCLUSION: The aqueous extract of Aloe vera facilitated the uptake of Na99mTcO4 in organs of rats and it was responsible to a high increase of levels of AST and ALT.


2015 ◽  
Vol 96 (5) ◽  
pp. 806-810
Author(s):  
R V Deev ◽  
Yu M Shatrova ◽  
A I Sinitskiy ◽  
N S Molchanova ◽  
A K Yunusova ◽  
...  

Aim. To study the changes in levels of biogenic amines-neurotransmitters in the brain at experimental post-traumatic stress disorder development in rats. Methods. Post-traumatic stress disorder was modeled by keeping 48 outbred male rats in under constant and inescapable strong unconditioned stimulus. The control group included 16 intact animals, not exposed to stress influences. The levels of 3,4-dihydroxyphenylalanine, dopamine, norepinephrine, epinephrine and gamma-aminobutyric acid were determined by fluorometric methods. Behavioral activity of animals was evaluated on the day 3, 7, 10 and 14 by «open field» and «elevated plus maze» actinographs. Results. When comparing the concentrations of studied neurotransmitters in the brain of control animals with experimental groups, reflecting the development of post-traumatic stress disorder at the time, adrenaline and 3,4-dihydroxyphenylalanine levels were increased on the third day, level of norepinephrine was reduced on the seventh day, 3,4-dihydroxyphenylalanine, dopamine, norepinephrine levels were elevaled, gamma-aminobutyric acid level was reduced on the tenth day, gamma-aminobutyric acid level was increased on the fourteenth day after the stress. Conclusion. According to the results of the correlation analysis, the largest contribution to the development of behavioral disorders are made by altered brain level of gamma-aminobutyric acid at the time of post-traumatic stress disorder formation (tenth and fourteenth day). At the earlier stages (third and seventh day), the relationship of rats behavioral activity and altered 3,4-dihydroxyphenylalanine and norepinephrine brain levels was shown.


2009 ◽  
Vol 12 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Evgeniya A. Zyablitseva ◽  
Nikolay S. Kositsyn ◽  
Galina I. Shul'gina

The research described here investigates the role played by inhibitory processes in the discriminations made by the nervous system of humans and animals between familiar and unfamiliar and significant and nonsignificant events. This research compared the effects of two inhibitory mediators of gamma-aminobutyric acid (GABA): 1) phenibut, a nonselective agonist of ionotropic GABAAand metabotropic GABABreceptors and 2) gaboxadol a selective agonist of ionotropic GABAAreceptors on the process of developing active defensive and inhibitory conditioned reflexes in alert non-immobilized rabbits. It was found that phenibut, but not gaboxadol, accelerates the development of defensive reflexes at an early stage of conditioning. Both phenibut and gaboxadol facilitate the development of conditioned inhibition, but the effect of gaboxadol occurs at later stages of conditioning and is less stable than that of phenibut. The earlier and more stable effects of phenibut, as compared to gaboxadol, on storage in memory of the inhibitory significance of a stimulus may occur because GABABreceptors play the dominant role in the development of internal inhibition during an early stage of conditioning. On the other hand this may occur because the participation of both GABAAand GABABreceptors are essential to the process. We discuss the polyfunctionality of GABA receptors as a function of their structure and the positions of the relevant neurons in the brain as this factor can affect regulation of various types of psychological processes.


2019 ◽  
Vol 9 (10) ◽  
pp. 260
Author(s):  
Seckin Aydin ◽  
Baris Ozoner

Background: Chiari Type I malformation (CM-I) is defined as the migration of cerebellar tonsils from the foramen magnum in the caudal direction and is characterized by the disproportion of the neural structures. The aim of this study was to investigate the brain volume differences between CM-I patients and normal population using a comparative volumetric analysis. Methods: 140 patients with CM-I and 140 age- and sex-matched healthy controls were included in this study. The magnetic resonance imaging (MRI) data of both groups were analyzed with an automated MRI brain morphometry system. Total intracranial, cerebrum, cerebellum, brainstem, cerebrospinal fluid (CSF), and lateral ventricle volumes as well as cerebrum and cerebellum gray/white matter (GM/WM) volumes were measured. Statistical analysis was performed. Results: Both total CSF and lateral ventricle volumes and volume percentages (Pct) were found significantly higher in CM-I patients compared to the control group. However, there were significant decreases in cerebrum and cerebellum volume Pct in CM-I patients. Although there were no significant differences in cerebrum WM volumes and volume Pct, cerebrum GM volume Pct were found to be significantly lower in CM-I patients. Conclusions: Revealing the increased CSF and lateral ventricle volume, and volume Pct supported concomitant ventricular enlargement and hydrocephalus in some CM-I patients. Decreased cerebrum GM volume Pct compared to the control group might be the underlying factor of some cortical dysfunctions in CM-I patients.


Nephron ◽  
1987 ◽  
Vol 46 (3) ◽  
pp. 301-304 ◽  
Author(s):  
Alan N. Elias ◽  
Nosratola D. Vaziri ◽  
M.R. Pandian ◽  
Krish Iyer ◽  
Mohammad A. Ansari

Author(s):  
Juncai Pu ◽  
Yiyun Liu ◽  
Siwen Gui ◽  
Lu Tian ◽  
Yue Yu ◽  
...  

AbstractExtensive research has been carried out on the metabolomic changes in animal models of depression; however, there is no general agreement about which metabolites exhibit constant changes. Therefore, the aim of this study was to identify consistently altered metabolites in large-scale metabolomics studies of depression models. We performed vote counting analyses to identify consistently upregulated or downregulated metabolites in the brain, blood, and urine of animal models of depression based on 3743 differential metabolites from 241 animal metabolomics studies. We found that serotonin, dopamine, gamma-aminobutyric acid, norepinephrine, N-acetyl-L-aspartic acid, anandamide, and tryptophan were downregulated in the brain, while kynurenine, myo-inositol, hydroxykynurenine, and the kynurenine to tryptophan ratio were upregulated. Regarding blood metabolites, tryptophan, leucine, tyrosine, valine, trimethylamine N-oxide, proline, oleamide, pyruvic acid, and serotonin were downregulated, while N-acetyl glycoprotein, corticosterone, and glutamine were upregulated. Moreover, citric acid, oxoglutaric acid, proline, tryptophan, creatine, betaine, L-dopa, palmitic acid, and pimelic acid were downregulated, and hippuric acid was upregulated in urine. We also identified consistently altered metabolites in the hippocampus, prefrontal cortex, serum, and plasma. These findings suggested that metabolomic changes in depression models are characterized by decreased neurotransmitter and increased kynurenine metabolite levels in the brain, decreased amino acid and increased corticosterone levels in blood, and imbalanced energy metabolism and microbial metabolites in urine. This study contributes to existing knowledge of metabolomic changes in depression and revealed that the reproducibility of candidate metabolites was inadequate in previous studies.


1988 ◽  
Vol 251 (2) ◽  
pp. 559-562 ◽  
Author(s):  
P C Caron ◽  
L J Cote ◽  
L T Kremzner

Putrescine is the major source of gamma-aminobutyric acid (GABA) in the rat adrenal gland. Diamine oxidase, and not monoamine oxidase, is essential for GABA formation from putrescine in the adrenal gland. Aminoguanidine, a diamine oxidase inhibitor, decreases the GABA concentration in the adrenal gland by more than 70% after 4 h, and almost to zero in 24 h. Studies using [14C]putrescine confirm that [14C]GABA is the major metabolite of putrescine in the adrenal gland. Inhibition of GABA transaminase by amino-oxyacetic acid does not change the GABA concentration in the adrenal gland, as compared with the brain, where the GABA concentration rises. With aminoguanidine, the turnover time of GABA originating from putrescine in the adrenal gland is 5.6 h, reflecting a slower rate of GABA metabolism compared with the brain. Since GABA in the adrenal gland is almost exclusively derived from putrescine, the role of GABA may relate to the role of putrescine as a growth factor and regulator of cell metabolism.


1978 ◽  
Vol 132 (2) ◽  
pp. 145-148 ◽  
Author(s):  
D. Lichtshtein ◽  
J. Dobkin ◽  
R. P. Ebstein ◽  
J. Biederman ◽  
R. Rimon ◽  
...  

Gamma-aminobutyric acid (GABA) levels in the CSF were measured in 9 normal individuals, 17 drug-free schizophrenic patients and 10 of these same schizophrenic patients after neuroleptic treatment. There was no significant difference between CSF level of GABA in the control group compared to those in schizophrenic patients; however, 6 of the 7 lowest GABA levels were from schizophrenic patients. There was a significant decline of 12 per cent in mean GABA levels in the CSF after a mean of two months of neuroleptic treatment.


1973 ◽  
Vol 23 ◽  
pp. 73
Author(s):  
T. Matsuda ◽  
J.Y. Wu ◽  
E. Roberts

Sign in / Sign up

Export Citation Format

Share Document