scholarly journals Activation of HSD11B1 in the bovine cumulus-oocyte complex during IVM and IVF

2019 ◽  
Vol 8 (7) ◽  
pp. 1029-1039 ◽  
Author(s):  
Masafumi Tetsuka ◽  
Misato Tanakadate

The bovine cumulus-oocyte complex (COC) is capable of converting cortisone, an inert glucocorticoid to active cortisol. This mechanism is mediated by 11β-hydroxysteroid oxidoreductase type 1 (HSD11B1), whose expression dramatically increases in the mature COC. In this study, we investigate the time course expression of HSD11B1 and the enzyme activity in the bovine COC undergoing maturation and fertilization in relation to key events taking place in the COC. Bovine COCs were subjected to in vitro maturation (IVM) and fertilization (IVF). The activities of HSD11B1 and HSD11B2, which mediates the opposite reaction, were measured using a radiometric conversion assay. In parallel studies, cumulus expansion, P4 production and the expression of genes associated with ovulation were measured. The reductive activity of HSD11B1 increased in the latter half of IVM and remained high during IVF, whereas the oxidative activity of HSD11B2 remained unchanged over both periods. Consequently, the net glucocorticoid metabolism in the bovine COC shifted from inactivation to activation around the time of ovulation and fertilization. The increase in HSD11B1 expression lagged behind that of P4 increase and cumulus expansion but ahead of the expressions of genes responsible for PGE2 synthesis. The reductive activity of HSD11B1 was well correlated with the cumulus expansion rate. This outcome indicates that the ability of the cumulus to activate glucocorticoids is related to its ability to synthesize hyaluronan. These results also indicate that the activation of HSD11B1 is an integral part of the sequential events taking place at the ovulation and fertilization in the bovine COC.

Reproduction ◽  
2016 ◽  
Vol 151 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Masafumi Tetsuka ◽  
Ryo Takagi ◽  
Nobuhiro Ambo ◽  
Thet Su Myat ◽  
Yuta Zempo ◽  
...  

Glucocorticoid action in target organs is regulated by relative activities of 11β-HSD type 1 (HSD11B1) that mainly converts cortisone to active cortisol and type 2 (HSD11B2) that inactivates cortisol to cortisone. HSD11Bs have been shown to be expressed in the ovary of various species. However, little is known about the expression and activity of HSD11Bs in the bovine cumulus–oocyte complex (COC). In the present study, we investigated the expression and activities of HSD11Bs in in vitro-matured (IVM) bovine COCs. Bovine COCs were matured in M199 supplemented with or without FSH and FCS. The expression of HSD11B1 and HSD11B2 was measured by using quantitative RT-PCR in denuded oocytes (DO) and cumulus cells (CC). Reductive and oxidative activities of HSD11Bs were determined by radiometric conversion assay using labeled cortisol, cortisone or dexamethasone in intact COCs, DO or CC in the presence or absence of 11-keto-progesterone (11kP), a selective inhibitor of HSD11B2. The presence of HSD11Bs in the oocyte was examined by immunofluorescence microscopy. Oocytes exclusively expressed HSD11B2 and its expression and activity were largely unchanged during IVM. CC, on the other hand, exclusively expressed HSD11B1 and its expression and activity were upregulated as IVM progressed. As a result, the net glucocorticoid metabolism shifted from inactivation to activation towards the end of IVM. These results indicate that the bovine COC is capable of modulating local glucocorticoid concentration and, by doing so, may create an environment that is favorable to ovulating oocyte for maturation, fertilization and subsequent development.


2014 ◽  
Author(s):  
Masafumi Tetsuka ◽  
Ryo Takagi ◽  
Nobuhiro Ambo ◽  
Yuta Zempo ◽  
Asuka Onuma

2007 ◽  
Vol 370 (1) ◽  
pp. 26-37 ◽  
Author(s):  
Li Sun ◽  
Julie A. Stenken ◽  
Amy Y. Yang ◽  
Jamie J. Zhao ◽  
Donald G. Musson

2019 ◽  
Vol 100 (6) ◽  
pp. 1473-1481 ◽  
Author(s):  
Bo-Yang Yu ◽  
Gerile Subudeng ◽  
Chen-Guang Du ◽  
Zhi-hong Liu ◽  
Yu-Fen Zhao ◽  
...  

1999 ◽  
Vol 84 (4) ◽  
pp. 1340-1345
Author(s):  
V. L. Green ◽  
V. Speirs ◽  
A. M. Landolt ◽  
P. M. Foy ◽  
S. L. Atkin

17β-Hydroxysteroid dehydrogenase (17βHSD) isoforms reversibly catalyze the final step in the formation of estradiol (E2) from estrone (E1) and the formation of testosterone from androstenedione. We have investigated 17βHSD type 1, 2, 3, and 4 gene expression and 17βHSD estrogenic activity in human anterior pituitary adenomas. 17βHSD messenger ribonucleic acid (mRNA) expression was studied by RT-PCR in 42 pituitary tumors and 3 normal pituitaries, 17βHSD activity was studied in 11 tumors and 17βHSD type 1 was immunolocalized in vitro in 6 tumors. 17βHSD type 1 gene expression was detected in 34 of 42 adenomas in all tumor subtypes; 17βHSD type 2 mRNA was detected in 18 of 42 adenomas, but not in prolactinomas; 17βHSD type 3 mRNA was detected in 12 of 42 adenomas, but not in corticotropinomas; 17βHSD type 4 was expressed in 20 of 42 adenomas by all adenoma subtypes. Reversible 17βHSD activity was found in 9 of 11 adenomas, and 17βHSD type 1 immunopositivity was cytoplasmically distributed in all 6 adenomas in vitro. All 4 17βHSD isoforms are variably expressed in human anterior pituitary adenomas, which also show 17βHSD enzyme activity, suggesting that 17βHSD may play an important role in regulating the local cellular levels of estradiol.


2016 ◽  
Vol 22 (8) ◽  
pp. 626-634 ◽  
Author(s):  
Chang Gun Cho ◽  
Kwang Pak ◽  
Nicholas Webster ◽  
Arwa Kurabi ◽  
Allen F Ryan

A major aspect of pathology in otitis media (OM), the most common childhood bacterial disease, is hyperplasia of the middle ear mucosa. Activation of innate immune receptors during OM leads to the activation of NF-κB, a pleiotropic transcription factor involved both in inflammation and tissue growth. To explore the role of NF-κB in mucosal hyperplasia during OM, we evaluated the expression of genes involved in two modes of NF-κB activation during a complete episode of acute, bacterial OM in mice. We also determined the effects of inhibitors of each pathway on infection-stimulated mucosal growth in vitro. A majority of the genes that mediate both the canonical and the non-canonical pathways of NF-κB activation were regulated during OM, many with kinetics related to the time course of mucosal hyperplasia. Inhibition of either pathway reduced the growth of cultured mucosal explants in a dose-dependent manner. However, inhibition of the canonical pathway produced a greater effect, suggesting that this mode of NF-κB activation dominates mucosal hyperplasia during OM.


2008 ◽  
Vol 104 (1) ◽  
pp. 157-169 ◽  
Author(s):  
Athanasius F. M. Marée ◽  
Mitsuhiro Komba ◽  
Diane T. Finegood ◽  
Leah Edelstein-Keshet

Macrophages play an important role in clearing apoptotic debris from tissue. Defective or reduced clearance, seen, for instance, in non-obese diabetic (NOD) mice, has been correlated with initiation of autoimmune (Type 1) diabetes (T1D) (O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Diabetes 51: 2481–2488, 2002). To validate such a link, it is essential to quantify the reduced clearance (for example, by comparison to BALB/c control mice) and to determine which elements of that clearance are impaired. Recently, we fit data for the time course of in vitro macrophage feeding experiments to basic models of macrophage clearance dynamics, thus quantifying kinetics of uptake and digestion of apoptotic cells in both mouse strains (Marée AFM, Komba M, Dyck C, Łabeçki M, Finegood DT, Edelstein-Keshet L. J Theor Biol 233: 533–551, 2005). In the cycle of modeling and experimental investigation, we identified the importance of 1) measuring short-, intermediate-, and long-time data (to increase the accuracy of parameter fits), and 2) designing experiments with distinct observable regimes, including engulfment-only and digestion-only phases. Here, we report on new results from experiments so designed. In comparing macrophages from the two strains, we find that NOD macrophage engulfment of apoptotic cells is 5.5 times slower than BALB/c controls. Significantly, our new data demonstrate that digestion is at least two times slower in NOD, in contrast with previous conclusions. Moreover, new data enable us to detect an acceleration in engulfment (after the first engulfment) in both strains, but much smaller in NOD macrophages.


2021 ◽  
Vol 22 (20) ◽  
pp. 11148
Author(s):  
Radek Procházka ◽  
Alexandra Bartková ◽  
Lucie Němcová ◽  
Matej Murín ◽  
Ahmed Gad ◽  
...  

The developmental potential of porcine oocytes cultured in vitro was remarkably enhanced in a medium containing FGF2, LIF and IGF1 (FLI) when compared to a medium supplemented with gonadotropins and EGF (control). We analyzed the molecular background of the enhanced oocyte quality by comparing the time course of MAPK3/1 and AKT activation, and the expression of genes controlled by these kinases in cumulus-oocyte complexes (COCs) cultured in FLI and the control medium. The pattern of MAPK3/1 activation in COCs was very similar in both media, except for a robust increase in MAPK3/1 phosphorylation during the first hour of culture in the FLI medium. The COCs cultured in the FLI medium exhibited significantly higher activity of AKT than in the control medium from the beginning up to 16 h of culture; afterwards a deregulation of AKT activity occurred in the FLI medium, which was not observed in the control medium. The expression of cumulus cell genes controlled by both kinases was also modulated in the FLI medium, and in particular the genes related to cumulus-expansion, signaling, apoptosis, antioxidants, cell-to-cell communication, proliferation, and translation were significantly overexpressed. Collectively, these data indicate that both MAPK3/1 and AKT are implicated in the enhanced quality of oocytes cultured in FLI medium.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Iwona Chmiel-Perzyńska ◽  
Adam Perzyński ◽  
Bartosz Olajossy ◽  
Paulina Gil-Kulik ◽  
Janusz Kocki ◽  
...  

Patients with diabetes mellitus (DM) type 1 and 2 are at a higher risk of cognitive decline and dementia; however, the underlying pathology is poorly understood. Kynurenic acid (KYNA), endogenous kynurenine metabolite, displays pleiotropic effects, including a blockade of glutamatergic and cholinergic receptors. Apart from well-known glial origin, kynurenic acid is robustly synthesized in the endothelium and its serum levels correlate with homocysteine, a risk factor for cognitive decline. Studies in an experimental DM model suggest that a selective, hippocampal increase of the kynurenic acid level may be an important factor contributing to diabetes-related cognitive impairment. The aim of this study was to assess the effects of chronic, four-week administration of losartan, angiotensin receptor blocker (ARB), on the brain KYNA in diabetic rats. Chromatographic and rt-PCR techniques were used to measure the level of KYNA and the expression of genes encoding kynurenine aminotransferases, KYNA biosynthetic enzymes, in the hippocampi of rats with streptozotocin-induced DM, treated with losartan. The effect of losartan on KYNA synthesis de novo was also evaluated in vitro, in brain cortical slices. The hippocampal increase of KYNA content occurred in diabetic rats treated and nontreated with insulin. Losartan did not affect KYNA levels when administered per se to naïve or diabetic animals but normalized KYNA content in diabetic rats receiving concomitantly insulin. The expression of CCBL1 (kat 1), AADAT (kat 2), and KAT3 (kat 3) genes did not differ between analyzed groups. Low concentrations of losartan did not affect KYNA production in vitro. The neuroprotective effect of ARBs in diabetic individuals may be, at least partially, linked to modulation of KYNA metabolism. The ability of ARB to modulate synthesis of KYNA in diabetic brain does not seem to result from changed expression of genes encoding KATs. We propose possible involvement of angiotensin AT4 receptors in the observed action of losartan.


1980 ◽  
Vol 35 (9-10) ◽  
pp. 747-749
Author(s):  
E. Jürgen Zöllner ◽  
Rudolf K. Zahn ◽  
Dietrich Falke

Abstract In primary rabbit kidney cells infected with herpes simplex virus four different neutral deoxyribonuclease activities can be detected by means of the deoxyribonuclease assay in DNA-containing polyacrylamide gels following their separation by discelectrophoresis. The method is suitable to follow independently the change in each activity of the different enzymes using only about 5 × 105 cells for each assay during the time-course of infection. Under these conditions one enzyme activity is constant, two disappear while the activity of a fourth one present only in infected cells, increases.


Sign in / Sign up

Export Citation Format

Share Document