scholarly journals Glucocorticoid metabolism in the bovine cumulus–oocyte complex matured in vitro

Reproduction ◽  
2016 ◽  
Vol 151 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Masafumi Tetsuka ◽  
Ryo Takagi ◽  
Nobuhiro Ambo ◽  
Thet Su Myat ◽  
Yuta Zempo ◽  
...  

Glucocorticoid action in target organs is regulated by relative activities of 11β-HSD type 1 (HSD11B1) that mainly converts cortisone to active cortisol and type 2 (HSD11B2) that inactivates cortisol to cortisone. HSD11Bs have been shown to be expressed in the ovary of various species. However, little is known about the expression and activity of HSD11Bs in the bovine cumulus–oocyte complex (COC). In the present study, we investigated the expression and activities of HSD11Bs in in vitro-matured (IVM) bovine COCs. Bovine COCs were matured in M199 supplemented with or without FSH and FCS. The expression of HSD11B1 and HSD11B2 was measured by using quantitative RT-PCR in denuded oocytes (DO) and cumulus cells (CC). Reductive and oxidative activities of HSD11Bs were determined by radiometric conversion assay using labeled cortisol, cortisone or dexamethasone in intact COCs, DO or CC in the presence or absence of 11-keto-progesterone (11kP), a selective inhibitor of HSD11B2. The presence of HSD11Bs in the oocyte was examined by immunofluorescence microscopy. Oocytes exclusively expressed HSD11B2 and its expression and activity were largely unchanged during IVM. CC, on the other hand, exclusively expressed HSD11B1 and its expression and activity were upregulated as IVM progressed. As a result, the net glucocorticoid metabolism shifted from inactivation to activation towards the end of IVM. These results indicate that the bovine COC is capable of modulating local glucocorticoid concentration and, by doing so, may create an environment that is favorable to ovulating oocyte for maturation, fertilization and subsequent development.

2019 ◽  
Vol 8 (7) ◽  
pp. 1029-1039 ◽  
Author(s):  
Masafumi Tetsuka ◽  
Misato Tanakadate

The bovine cumulus-oocyte complex (COC) is capable of converting cortisone, an inert glucocorticoid to active cortisol. This mechanism is mediated by 11β-hydroxysteroid oxidoreductase type 1 (HSD11B1), whose expression dramatically increases in the mature COC. In this study, we investigate the time course expression of HSD11B1 and the enzyme activity in the bovine COC undergoing maturation and fertilization in relation to key events taking place in the COC. Bovine COCs were subjected to in vitro maturation (IVM) and fertilization (IVF). The activities of HSD11B1 and HSD11B2, which mediates the opposite reaction, were measured using a radiometric conversion assay. In parallel studies, cumulus expansion, P4 production and the expression of genes associated with ovulation were measured. The reductive activity of HSD11B1 increased in the latter half of IVM and remained high during IVF, whereas the oxidative activity of HSD11B2 remained unchanged over both periods. Consequently, the net glucocorticoid metabolism in the bovine COC shifted from inactivation to activation around the time of ovulation and fertilization. The increase in HSD11B1 expression lagged behind that of P4 increase and cumulus expansion but ahead of the expressions of genes responsible for PGE2 synthesis. The reductive activity of HSD11B1 was well correlated with the cumulus expansion rate. This outcome indicates that the ability of the cumulus to activate glucocorticoids is related to its ability to synthesize hyaluronan. These results also indicate that the activation of HSD11B1 is an integral part of the sequential events taking place at the ovulation and fertilization in the bovine COC.


2014 ◽  
Author(s):  
Masafumi Tetsuka ◽  
Ryo Takagi ◽  
Nobuhiro Ambo ◽  
Yuta Zempo ◽  
Asuka Onuma

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 514
Author(s):  
Hilal Demirkesen-Bicak ◽  
Muhammet Arici ◽  
Mustafa Yaman ◽  
Salih Karasu ◽  
Osman Sagdic

This study aimed to evaluate the influence of sourdough fermentation on the estimated glycemic index (eGI), in vitro starch digestibility, and textural and sensory properties of eight experimentally prepared sourdough breads. Wheat and whole wheat flour bread samples were produced under different fermentation conditions (25 °C and 30 °C) and fermentation methods (type-1 and type-2). In type-1 fermentation, sourdough was obtained via spontaneous fermentation. Indigenous strains (Lactobacillus brevis ELB99, Lactiplantibacillus plantarum ELB75, and Saccharomyces cerevisiae TGM55) were used for type-2 fermentation. Fermentation type and temperature significantly affected eGI, the hydrolysis index (HI), the starch fraction, and the textural properties of the samples (p < 0.05). The resistant starch (RS) content increased after fermentation, while rapidly digestible starch (RDS), HI, and eGI decreased. RS values were significantly higher in type-2 than in type-1 at the same temperature for both flour types (p < 0.05). At 25 °C, RS values were higher in both fermentation types. In the white flour samples, eGI values were in the range of 60.8–78.94 and 62.10–78.94 for type-1 and type-2, respectively. The effect of fermentation type on eGI was insignificant (p < 0.05). In the whole flour samples, fermentation type and temperature significantly affected eGI (p < 0.05). The greatest eGI decreases were in whole wheat sourdough bread at 30 °C using type-2 (29.74%). The 30 °C and type-2 samples showed lower hardness and higher specific volume. This study suggests that fermentation type and temperature could affect the eGI and the textural and sensory properties of sourdough bread, and these factors should be considered during bread production. The findings also support the consumption of wheat and whole wheat breads produced by type-2 fermentation due to higher RS and slowly digestible starch (SDS) and lower RDS and eGI values.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Bae Huey Tee ◽  
See Ziau Hoe ◽  
Swee Hung Cheah ◽  
Sau Kuen Lam

AlthoughEurycoma longifoliahas been studied for erectile function, the blood pressure- (BP-) lowering effect has yet to be verified. Hence, this study aims at investigating the BP-lowering properties of the plant with a view to develop an antihypertensive agent that could also preserve erectile function. Ethanolic root extract was partitioned by hexane, dichloromethane (DCM), ethyl acetate, butanol, and water. The DCM fraction, found to be potent in relaxing phenylephrine- (PE-) precontracted rat aortic rings, was further purified by column chromatography. Subfraction DCM-II, being the most active in relaxing aortae, was studied for effects on the renin-angiotensin and kallikrein-kinin systems in aortic rings. The effect of DCM-II on angiotensin-converting enzyme (ACE) activity was also evaluatedin vitro. Results showed that DCM-II reduced (p<0.05) the contractions evoked by angiotensin I and angiotensin II (Ang II). In PE-precontracted rings treated with DCM-II, the Ang II-induced contraction was attenuated (p<0.05) while bradykinin- (BK-) induced relaxation enhanced (p<0.001).In vitro, DCM-II inhibited (p<0.001) the activity of ACE. These data demonstrate that the vasodilatory effect of DCM-II appears to be mediatedviainhibition of Ang II type 1 receptor and ACE as well as enhancement of Ang II type 2 receptor activation and BK activity.


1998 ◽  
Vol 6 (3-4) ◽  
pp. 331-342 ◽  
Author(s):  
Christoph Specht ◽  
Hans-Gerd Pauels ◽  
Christian Becker ◽  
Eckehart Kölsch

The involvement of counteractiveCD8+T-cell subsets during tumor-specific immune responses was analyzed in a syngeneic murine plasmacytoma model.CD8+Tc cells against the immunogenic IL-10-producing BALB/c plasmacytoma ADJ-PC-5 can be easily induced by immunization of BALB/c mice with X-irradiated ADJ-PC-5 tumor cellsin vivoandin vitro. However, the failure of recipient mice to mount a protective Tc response against the tumor during early stages of a real or simulated tumor growth is not due to immunological ignorance, but depends on the induction of tumor-specific tolerance, involving a population of tumorinducedCD8+T cells that are able to inhibit the generation of tumor-specific Tc cells in a primary ADJ-PC-5-specific MLTC, using IFN-γas a suppressive factor. Whereas most longterm cultivated CD8+ADJ-PC-5-specific Tc lines produce type-1 cytokines on stimulation, at least two of them, which were derived from a primary MLTC, display a type-2 cytokine spectrum. Furthermore, the primaryin vitroTc response against ADJ-PC-5 cells shows characteristics of a Tc2 response. The Tc response is strictly depending on tumor-derived IL-10.CD8+Tc cells that are induced in a primary MLTC do not produce IFN-γ, and the tumor-specific Tc response is enhanced by IL-4 but suppressed by IFN-γor IL-12. In contrast, ADJ-PC- 5-specificCD8+Tc cells from immunized mice are IFN-γproducing Tc1 cells. Since the primaryin vitroTc response against the tumor is suppressed even by the smallest numbers of irradiated ADJ-PC-5-specific Tc1 cells via IFN-γthese Tc1 cells behave similar to the suppressiveCD8+T cells that are induced during early stages of ADJ-PC-5 tumorigenesis.


1999 ◽  
Vol 112 (2) ◽  
pp. 191-199 ◽  
Author(s):  
F. Edom-Vovard ◽  
V. Mouly ◽  
J.P. Barbet ◽  
G.S. Butler-Browne

To understand how and when myogenic precursor cells become committed to their particular developmental programs, we have analysed the different populations of myoblasts which grow out from explants of muscle tissue isolated from human limb buds from the beginning of primary fibre formation throughout subsequent development and post-natal growth. Four phenotypically distinct types of myoblasts were identified on the basis of their expression of desmin, myogenin and myosin heavy chain isoforms (MyHC), and after 5 and 20 divisions, cells were cloned. All four types of myoblasts were present at the beginning of primary myogenesis. Each respective phenotype was stably heritable through cloning and subsequent proliferation. The type 1 clones correspond to a novel class of myoblasts never described during human development, that biochemically differentiates, but does not fuse. Type 2 clones are composed of small myotubes expressing only embryonic MyHC. Type 3 clones are composed of thin and long myotubes expressing both embryonic and fetal MyHCs. The type 4 clones are composed of myotubes that have a phenotype very similar to human satellite cells. Contrasting with others species, no other population of myoblasts appear during fetal development and only the relative number of these four types changes.


Life Sciences ◽  
1998 ◽  
Vol 63 (19) ◽  
pp. PL289-PL295 ◽  
Author(s):  
Takehiko Yamada ◽  
Masahiro Akishita ◽  
Matthew J. Pollman ◽  
Gary H. Gibbons ◽  
Victor J. Dzau ◽  
...  

2004 ◽  
Vol 20 (5) ◽  
pp. 507-512 ◽  
Author(s):  
Ana Machuca ◽  
Linna Ding ◽  
Rolf Taffs ◽  
Sherwin Lee ◽  
Owen Wood ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document