scholarly journals Gene expression profiles in aldosterone-producing adenomas and adjacent adrenal glands

2011 ◽  
Vol 164 (4) ◽  
pp. 613-619 ◽  
Author(s):  
Tao Wang ◽  
Fumitoshi Satoh ◽  
Ryo Morimoto ◽  
Yasuhiro Nakamura ◽  
Hironobu Sasano ◽  
...  

BackgroundPrimary aldosteronism (PA) is the most common form of endocrine hypertension affecting ∼8–10% of hypertensive subjects. Aldosterone production in PA occurs under low-renin conditions, and the mechanisms that maintain the production of aldosterone in PA remain unknown.ObjectiveThis study was designed to compare the transcript profiles between aldosterone-producing adenoma (APA) and their adjacent adrenal gland (AAG) from the same adrenal.MethodsTotal RNA was extracted from ten APA and ten AAG; and subsequently analyzed by microarray and real-time quantitative RT-PCR (qPCR). The microarray data were paired for each APA–AAG, and analyzed by GeneSpring GX 11 with paired t-test and fold change calculations for each transcript. Changes identified by microarray analysis were confirmed by qPCR.ResultsMicroarray analysis indicated that 14 genes had significantly up-regulated expression in APA compared to AAG. Among the elevated genes were aldosterone synthase (CYP11B2) as well as novel transcription factors, calmodulin-binding proteins, and other genes that have not been previously studied in APA. Selective analysis of 11 steroidogenic enzymes using microarray demonstrated that only CYP11B2 showed a significantly higher transcript level in APA compared to AAG (P<0.001). In contrast, AKR1C3 (17β-hydroxysteroid dehydrogenase type 5), CYP17 (17α-hydroxylase/17,20 lyase), and CYB5 (cytochrome b5) showed significantly lower transcript level in APA (P<0.05).ConclusionThe transcriptome analysis of APA compared with AAG showed several novel genes that are associated with APA phenotype. This gene list provides new candidates for the elucidation of the molecular mechanisms leading to PA.

2010 ◽  
Vol 104 (3) ◽  
pp. 336-345 ◽  
Author(s):  
Inka Boomgaarden ◽  
Sarah Egert ◽  
Gerald Rimbach ◽  
Siegfried Wolffram ◽  
Manfred J. Müller ◽  
...  

Quercetin has been described as having a wide range of beneficial effects in humans, ranging from anti-carcinogenic properties to reducing the risk of CVD. Nevertheless, underlying molecular mechanisms have been mostly investigated in vitro. Here, we tested whether a daily supplementation of quercetin leads to reproducible changes in human monocyte gene expression profiles. In study I, quercetin in varying dosages was given to healthy subjects for 2 weeks. RNA from monocytes isolated at the beginning and end of the study from subjects receiving 150 mg quercetin per d was subjected to transcriptome-wide microarray analysis. In study II, a double-blind cross-over study, twenty subjects exhibiting a ‘cardiovascular risk phenotype’ received 150 mg quercetin or placebo daily for 6 weeks each and served as the verification group. Microarray analysis revealed a number of differentially expressed genes. The most significantly represented functional groups were those of the immune system, nucleic acid metabolism, apoptosis and O-glycan biosynthesis. Twenty-four genes were chosen for technical replication and independent verification by quantitative real-time PCR. When comparing placebo and quercetin treatment, four genes showed significantly different expression changes (C1GALT1, O-glycan biosynthesis; GM2A, glycolipid catabolism; HDGF, cell proliferation; SERPINB9, apoptosis). However, these were minimal in respect to magnitude of fold change. In conclusion, although microarray analysis revealed extensive effects of quercetin on gene expression, the employment of a placebo-controlled study design showed no comparable results for twenty-four verification targets. This emphasises the need for stringent designs in nutritional intervention studies with the aim to identify relevant changes in gene expression.


2021 ◽  
Vol 14 (1) ◽  
pp. 41
Author(s):  
Hana Votavova ◽  
Zuzana Urbanova ◽  
David Kundrat ◽  
Michaela Dostalova Merkerova ◽  
Martin Vostry ◽  
...  

Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hai-Yan Yin ◽  
Yong Tang ◽  
Sheng-Feng Lu ◽  
Ling Luo ◽  
Jia-Ping Wang ◽  
...  

As a major alternative therapy in Traditional Chinese Medicine, it has been demonstrated that moxibustion could generate a series of molecular events in blood, spleen, and brain, and so forth. However, what would happen at the moxibustioned site remained unclear. To answer this question, we performed a microarray analysis with skin tissue taken from the moxibustioned site also Zusanli acupoint (ST36) where 15-minute moxibustion stimulation was administrated. The results exhibited 145 upregulated and 72 downregulated genes which responded immediately under physiological conditions, and 255 upregulated and 243 downregulated genes under pathological conditions. Interestingly, most of the pathways and biological processes of the differentially expressed genes (DEGs) under pathological conditions get involved in immunity, while those under physiological conditions are involved in metabolism.


Author(s):  
Edward C. Emery ◽  
Patrik Ernfors

Primary sensory neurons of the dorsal root ganglion (DRG) respond and relay sensations that are felt, such as those for touch, pain, temperature, itch, and more. The ability to discriminate between the various types of stimuli is reflected by the existence of specialized DRG neurons tuned to respond to specific stimuli. Because of this, a comprehensive classification of DRG neurons is critical for determining exactly how somatosensation works and for providing insights into cell types involved during chronic pain. This article reviews the recent advances in unbiased classification of molecular types of DRG neurons in the perspective of known functions as well as predicted functions based on gene expression profiles. The data show that sensory neurons are organized in a basal structure of three cold-sensitive neuron types, five mechano-heat sensitive nociceptor types, four A-Low threshold mechanoreceptor types, five itch-mechano-heat–sensitive nociceptor types and a single C–low-threshold mechanoreceptor type with a strong relation between molecular neuron types and functional types. As a general feature, each neuron type displays a unique and predicable response profile; at the same time, most neuron types convey multiple modalities and intensities. Therefore, sensation is likely determined by the summation of ensembles of active primary afferent types. The new classification scheme will be instructive in determining the exact cellular and molecular mechanisms underlying somatosensation, facilitating the development of rational strategies to identify causes for chronic pain.


Author(s):  
Zhenhua Dang ◽  
Yuanyuan Jia ◽  
Yunyun Tian ◽  
Jiabin Li ◽  
Yanan Zhang ◽  
...  

Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is one of the widespread dominant species on the typical steppe of the Inner Mongolian Plateau, and is regarded as a suitable species for studying the effects of grazing in this region. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Accordingly, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. A total of 2,357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified that indicated modulation of Calvin–Benson cycle and photorespiration metabolic pathways. The key gene´expression profiles encoding various proteins (e.g., Ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection, and identify important questions to address in future transcriptome studies.


Sign in / Sign up

Export Citation Format

Share Document