Quantity of Na/K-ATPase and glucose transporters in the plasma membrane of rat adipocytes is reduced by in vivo triiodothyronine

1995 ◽  
Vol 133 (5) ◽  
pp. 626-634 ◽  
Author(s):  
Marianne Voldstedlund ◽  
Jørgen Tranum-Jensen ◽  
Aase Handberg ◽  
Jørgen Vinten

Voldstedlund M. Tranum-Jensen J, Handberg A, Vinten J. Quantity of Na/K-ATPase and glucose transporters in the plasma membrane of rat adipocytes is reduced by in vivo triiodothyronine. Eur J Endocrinol 1995:133:626–34. ISSN 0804–4643 The expression of sodium-potassium pumps and glucose transporters in pure adipocyte plasma membranes from a hyperthyroid animal model was studied. Hyperthyroidism was induced by enteral administration of five doses of 90 μg of triiodothyronine every second day to 8-week-old rats. Following isolation of epididymal adipocytes, 3-O-methylglucose transport was measured and the number of Na/K-ATPase-(α1- and α2-isoforms) and glucose transporter (GLUT1 and GLUT4) molecules in sheets of adipocyte plasma membrane were determined by quantitative immunoelectron microscopy, using gold labelling. Maximal in vitro insulin stimulation of adipocytes increased the glucose transport rate and the amount of GLUT4 in the plasma membrane 15-fold, whereas the amount of α2 was unaffected, In adipocytes from hyperthyroid rats, mean adipocyte volume was decreased by 18% and the quantities of GLUT4 per unit area of plasma membrane (maximal insulin stimulation) and of α2 were decreased by 19% and 15% respectively. Thus, hypotrophia of fat tissue in the hyperthyroid state is associated with a decreased expression in the plasma membrane of the glucose transporter GLUT4 and the α2 -isoform of Na/K-ATPase. Marianne Voldstedlund, Department of Medical Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark

2013 ◽  
Vol 24 (16) ◽  
pp. 2544-2557 ◽  
Author(s):  
L. Amanda Sadacca ◽  
Joanne Bruno ◽  
Jennifer Wen ◽  
Wenyong Xiong ◽  
Timothy E. McGraw

Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.


2007 ◽  
Vol 27 (9) ◽  
pp. 3456-3469 ◽  
Author(s):  
Shaohui Huang ◽  
Larry M. Lifshitz ◽  
Christine Jones ◽  
Karl D. Bellve ◽  
Clive Standley ◽  
...  

ABSTRACT Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by ∼4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane.


2020 ◽  
Vol 99 (8) ◽  
pp. 977-986
Author(s):  
H. Ida-Yonemochi ◽  
K. Otsu ◽  
H. Harada ◽  
H. Ohshima

Glucose is an essential source of energy for mammalian cells and is transported into the cells by glucose transporters. There are 2 types of glucose transporters: one is a passive glucose transporter, GLUT ( SLC2A), and the other is a sodium-dependent active glucose transporter, SGLT ( SLC5A). We previously reported that the expression of GLUTs during tooth development is precisely and spatiotemporally controlled and that the glucose uptake mediated by GLUT1 plays a crucial role in early tooth morphogenesis and tooth size determination. This study aimed to clarify the localization and roles of SGLT1 and SGLT2 in murine ameloblast differentiation by using immunohistochemistry, immunoelectron microscopy, an in vitro tooth organ culture experiment, and in vivo administration of an inhibitor of SGLT1/2, phloridzin. SGLT1, which has high affinity with glucose, was immunolocalized in the early secretory ameloblasts and the ruffle-ended ameloblasts in the maturation stage. However, SGLT2, which has high glucose transport capacity, was observed in the stratum intermedium, papillary layer, and ameloblasts at the maturation stage and colocalized with Na+-K+-ATPase. The inhibition of SGLT1/2 by phloridzin in the tooth germs induced the disturbance of ameloblast differentiation and enamel matrix formation both in vitro (organ culture) and in vivo (mouse model). The expression of SGLT1 and SGLT2 was significantly upregulated in hypoxic conditions in the ameloblast-lineage cells. These findings suggest that the active glucose uptake mediated by SGLT1 and SGLT2 is strictly regulated and dependent on the intra- and extracellular microenvironments during tooth morphogenesis and that the appropriate passive and active glucose transport is an essential event in amelogenesis.


1992 ◽  
Vol 285 (1) ◽  
pp. 223-228 ◽  
Author(s):  
A Schürmann ◽  
G Mieskes ◽  
H G Joost

The effects of protein phosphorylation and dephosphorylation on glucose transport activity reconstituted from adipocyte membrane fractions and its relationship to the phosphorylation state of the adipose/muscle-type glucose transporter (GLUT4) were studied. In vitro phosphorylation of membranes in the presence of ATP and protein kinase A produced a stimulation of the reconstituted glucose transport activity in plasma membranes and low-density microsomes (51% and 65% stimulation respectively), provided that the cells had been treated with insulin prior to isolation of the membranes. Conversely, treatment of membrane fractions with alkaline phosphatase produced an inhibition of reconstituted transport activity. However, in vitro phosphorylation catalysed by protein kinase C failed to alter reconstituted glucose transport activity in membrane fractions from both basal and insulin-treated cells. In experiments run under identical conditions, the phosphorylation state of GLUT4 was investigated by immunoprecipitation of glucose transporters from membrane fractions incubated with [32P]ATP and protein kinases A and C. Protein kinase C stimulated a marked phosphate incorporation into GLUT4 in both plasma membranes and low-density microsomes. Protein kinase A, in contrast to its effect on reconstituted glucose transport activity, produced a much smaller phosphorylation of the GLUT4 in plasma membranes than in low-density microsomes. The present data suggest that glucose transport activity can be modified by protein phosphorylation via an insulin-dependent mechanism. However, the phosphorylation of the GLUT4 itself was not correlated with changes in its reconstituted transport activity.


1988 ◽  
Vol 251 (2) ◽  
pp. 491-497 ◽  
Author(s):  
S Matthaei ◽  
J M Olefsky ◽  
E Karnieli

This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.


2004 ◽  
Vol 18 (11) ◽  
pp. 2660-2671 ◽  
Author(s):  
Johanna A. Huhtakangas ◽  
Christopher J. Olivera ◽  
June E. Bishop ◽  
Laura P. Zanello ◽  
Anthony W. Norman

Abstract The steroid hormone 1α,25(OH)2-vitamin D3 (1,25D) regulates gene transcription through a nuclear receptor [vitamin D receptor (VDR)] and initiation of rapid cellular responses through a putative plasma membrane-associated receptor (VDRmem). This study characterized the VDRmem present in a caveolae-enriched membrane fraction (CMF), a site of accumulation of signal transduction agents. Saturable and specific [3H]-1,25D binding in vitro was found in CMF of chick, rat, and mouse intestine; mouse lung and kidney; and human NB4 leukemia and rat ROS 17/2.8 osteoblast-like cells; in all cases the 1,25D KD binding dissociation constant = 1–3 nm. Our data collectively support the classical VDR being the VDRmem in caveolae: 1) VDR antibody immunoreactivity was detected in CMF of all tissues tested; 2) competitive binding of [3H]-1,25D by eight analogs of 1,25D was significantly correlated between nuclei and CMF (r2 = 0.95) but not between vitamin D binding protein (has a different ligand binding specificity) and CMF; 3) confocal immunofluorescence microscopy of ROS 17/2.8 cells showed VDR in close association with the caveolae marker protein, caveolin-1, in the plasma membrane region; 4) in vivo 1,25D pretreatment reduced in vitro [3H]-1,25D binding by 30% in chick and rat intestinal CMF demonstrating in vivo occupancy of the CMF receptor by 1,25D; and 5) comparison of [3H]-1,25D binding in VDR KO and WT mouse kidney tissue showed 85% reduction in VDR KO CMF and 95% reduction in VDR KO nuclear fraction. This study supports the presence of VDR as the 1,25D-binding protein associated with plasma membrane caveolae.


2000 ◽  
Vol 164 (2) ◽  
pp. 187-195 ◽  
Author(s):  
R Romero ◽  
B Casanova ◽  
N Pulido ◽  
AI Suarez ◽  
E Rodriguez ◽  
...  

In 3T3-L1 adipocytes we have examined the effect of tri-iodothyronine (T(3)) on glucose transport, total protein content and subcellular distribution of GLUT1 and GLUT4 glucose transporters. Cells incubated in T(3)-depleted serum were used as controls. Cells treated with T(3) (50 nM) for three days had a 3.6-fold increase in glucose uptake (P<0.05), and also presented a higher insulin sensitivity, without changes in insulin binding. The two glucose carriers, GLUT1 and GLUT4, increased by 87% (P<0.05) and 90% (P<0. 05), respectively, in cells treated with T(3). Under non-insulin-stimulated conditions, plasma membrane fractions obtained from cells exposed to T(3) were enriched with both GLUT1 (3. 29+/-0.69 vs 1.20+/-0.29 arbitrary units (A.U.)/5 microg protein, P<0.05) and GLUT4 (3.50+/-1.16 vs 0.82+/-0.28 A.U./5 microg protein, P<0.03). The incubation of cells with insulin produced the translocation of both glucose transporters to plasma membranes, and again cells treated with T(3) presented a higher amount of GLUT1 and GLUT4 in the plasma membrane fractions (P<0.05 and P<0.03 respectively). These data indicate that T(3) has a direct stimulatory effect on glucose transport in 3T3-L1 adipocytes due to an increase in GLUT1 and GLUT4, and by favouring their partitioning to plasma membranes. The effect of T(3) on glucose uptake induced by insulin can also be explained by the high expression of both glucose transporters.


1994 ◽  
Vol 126 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
A L Hitt ◽  
T H Lu ◽  
E J Luna

We have cloned and sequenced ponticulin, a 17,000-dalton integral membrane glycoprotein that binds F-actin and nucleates actin assembly. A single copy gene encodes a developmentally regulated message that is high during growth and early development, but drops precipitously during cell streaming at approximately 8 h of development. The deduced amino acid sequence predicts a protein with a cleaved NH2-terminal signal sequence and a COOH-terminal glycosyl anchor. These predictions are supported by amino acid sequencing of mature ponticulin and metabolic labeling with glycosyl anchor components. Although no alpha-helical membrane-spanning domains are apparent, several hydrophobic and/or sided beta-strands, each long enough to traverse the membrane, are predicted. Although its location on the primary sequence is unclear, an intracellular domain is indicated by the existence of a discontinuous epitope that is accessible to antibody in plasma membranes and permeabilized cells, but not in intact cells. Such a cytoplasmically oriented domain also is required for the demonstrated role of ponticulin in binding actin to the plasma membrane in vivo and in vitro (Hitt, A. L., J. H. Hartwig, and E. J. Luna. 1994. Ponticulin is the major high affinity link between the plasma membrane and the cortical actin network in Dictyostelium. J. Cell Biol. 126:1433-1444). Thus, ponticulin apparently represents a new category of integral membrane proteins that consists of proteins with both a glycosyl anchor and membrane-spanning peptide domain(s).


2020 ◽  
Vol 295 (22) ◽  
pp. 7686-7696 ◽  
Author(s):  
Rabea Verhaegh ◽  
Katrin Anne Becker ◽  
Michael J. Edwards ◽  
Erich Gulbins

Sphingosine is a long-chain sphingoid base that has been shown to have bactericidal activity against many pathogens, including Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. We have previously demonstrated that sphingosine is present in nasal, tracheal, and bronchial epithelial cells and constitutes a central element of the defense of the airways against bacterial pathogens. Here, using assorted lipid-binding and cell biology assays, we demonstrate that exposing P. aeruginosa and S. aureus cells to sphingosine results in a very rapid, i.e. within minutes, permeabilization of the bacterial plasma membrane, resulting in leakiness of the bacterial cells, loss of ATP, and loss of bacterial metabolic activity. These alterations rapidly induced bacterial death. Mechanistically, we demonstrate that the presence of the protonated NH2 group in sphingosine, which is an amino-alcohol, is required for sphingosine's bactericidal activity. We also show that the protonated NH2 group of sphingosine binds to the highly negatively–charged lipid cardiolipin in bacterial plasma membranes. Of note, this binding was required for bacterial killing by sphingosine, as revealed by genetic experiments indicating that E. coli or P. aeruginosa strains that lack cardiolipin synthase are resistant to sphingosine, both in vitro and in vivo. We propose that binding of sphingosine to cardiolipin clusters cardiolipin molecules in the plasma membrane of bacteria. This clustering results in the formation of gel-like or even crystal-like structures in the bacterial plasma membrane and thereby promotes rapid permeabilization of the plasma membrane and bacterial cell death.


1995 ◽  
Vol 73 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Patricia A. King ◽  
Mary N. Rosholt ◽  
Kenneth B. Storey

One of the critical adaptations for freeze tolerance by the wood frog, Rana sylvatica, is the production of large quantities of glucose as an organ cryoprotectant during freezing exposures. Glucose export from the liver, where it is synthesized, and its uptake by other organs is dependent upon carrier-mediated transport across plasma membranes by glucose-transporter proteins. Seasonal changes in the capacity to transport glucose across plasma membranes were assessed in liver and skeletal muscle of wood frogs; summer-collected (June) frogs were compared with autumn-collected (September) cold-acclimated (5 °C for 3–4 weeks) frogs. Plasma membrane vesicles prepared from liver of autumn-collected frogs showed 6-fold higher rates of carrier-mediated glucose transport than vesicles from summer-collected frogs, maximal velocity (Vmax) values for transport being 72 ± 14 and 12.0 + 2.9 nmol∙mg protein−1∙s−1, respectively (at 10 °C). However, substrate affinity constants for carrier-mediated glucose transport (K1/2) did not change seasonally. The difference in transport rates was due to greater numbers of glucose transporters in liver plasma membranes from autumn-collected frogs. The total number of transporter sites, as determined by cytochalasin B binding, was 8.5-fold higher in autumn than in summer. Glucose transporters in wood frog liver membranes cross-reacted with antibodies to the rat GluT-2 glucose transporter (the mammalian liver isoform), and Western blots further confirmed a large increase in transporter numbers in liver membranes from autumn- versus summer-collected frogs. By contrast with the liver, however, there were no seasonal changes in glucose-transporter activity or numbers in plasma membranes isolated from skeletal muscle. We conclude that an enhanced capacity for glucose transport across liver, but not muscle, plasma membranes during autumn cold-hardening is an important adaptation that anticipates the need for rapid export of cryoprotectant from liver during natural freezing episodes.


Sign in / Sign up

Export Citation Format

Share Document