scholarly journals Effect of activin on production and secretion of prolactin and growth hormone in cultured rat GH3 cells

2000 ◽  
pp. 506-511 ◽  
Author(s):  
N Tamura ◽  
M Irahara ◽  
A Kuwahara ◽  
K Ushigoe ◽  
H Sugino ◽  
...  

OBJECTIVE: To evaluate the effect of the growth factor activin A on the secretion of prolactin (PRL) and GH in cultured GH3 cells. METHODS: The concentrations of PRL and GH secreted from GH3 cells cultured in media with and without activin A were measured by RIA, and the expression of PRL mRNA and GH mRNA were analyzed using the Northern blot method. RESULTS: Activin A significantly inhibited PRL release from GH3 cells cultured for 48h in a dose-dependent manner (activin: 0.3-3nM). The inhibitory effects of 3nM activin A were observed in the culture from 12h to 48h (53.2% of control). Activin A (3nM) also significantly inhibited the expression of PRL mRNA at 24h (33.8% of control). In contrast, activin A significantly stimulated GH release from GH3 cells cultured for 48h in a dose-dependent manner (activin: 0.3-3nM). The stimulatory effect of 3nM activin A was observed in the culture for 48h (157.6% of control). Activin A (3nM) also significantly stimulated the expression of GH mRNA at 24h (183.6% of control). In spite of these significant changes in PRL and GH secretion, pit-1 mRNA levels were not significantly changed by activin A. CONCLUSIONS: These findings indicated that activin A modulates PRL and GH secretion through the regulation of PRL and GH gene transcription in GH3 cells, but that these effects are unrelated to pit-1 gene expression.

2004 ◽  
Vol 286 (6) ◽  
pp. L1210-L1219 ◽  
Author(s):  
Olga L. Miakotina ◽  
Jeanne M. Snyder

Surfactant protein A (SP-A), the most abundant pulmonary surfactant protein, plays a role in innate host defense and blocks the inhibitory effects of serum proteins on surfactant surface tension-lowering properties. SP-A mRNA and protein are downregulated by phorbol esters (TPA) via inhibition of gene transcription. We evaluated the TPA signaling pathways involved in SP-A inhibition in a lung cell line, H441 cells. TPA caused sustained phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK, and c-Jun-NH2-terminal kinase. An inhibitor of conventional and novel isoforms of protein kinase C (PKC) and two inhibitors of p44/42 MAPK kinase partially or completely blocked the inhibitory effects of TPA on SP-A mRNA levels. In contrast, inhibitors of conventional PKC-α and -β, stress-activated protein kinases, protein phosphatases, protein kinase A, and the phosphatidylinositol 3-kinase pathway had no effect on the TPA-mediated inhibition of SP-A mRNA. TPA also stimulated the synthesis of c-Jun mRNA and protein in a time-dependent manner. Inhibitors of the p44/42 MAPK signaling pathway and PKC blocked the TPA-mediated phosphorylation of p44/42 MAPK and the increase in c-Jun mRNA. We conclude that TPA inhibits SP-A gene expression via novel isoforms of PKC, the p44/42 MAPK pathway, and the activator protein-1 complex.


2005 ◽  
Vol 289 (6) ◽  
pp. R1625-R1633 ◽  
Author(s):  
Christian Klausen ◽  
Takeshi Tsuchiya ◽  
John P. Chang ◽  
Hamid R. Habibi

Gonadotropin-releasing hormone (GnRH) is produced by the hypothalamus and stimulates the synthesis and secretion of gonadotropin hormones. In addition, GnRH also stimulates the production and secretion of growth hormone (GH) in some fish species and in humans with certain clinical disorders. In the goldfish pituitary, GH secretion and gene expression are regulated by two endogenous forms of GnRH known as salmon GnRH and chicken GnRH-II. It is well established that PKC mediates GnRH-stimulated GH secretion in the goldfish pituitary. In contrast, the signal transduction of GnRH-induced GH gene expression has not been elucidated in any model system. In this study, we demonstrate, for the first time, the presence of novel and atypical PKC isoforms in the pituitary of a fish. Moreover, our results indicate that conventional PKCα is present selectively in GH-producing cells. Treatment of primary cultures of dispersed goldfish pituitary cells with PKC activators (phorbol ester or diacylglycerol analog) did not affect basal or GnRH-induced GH mRNA levels, and two different inhibitors of PKC (calphostin C and GF109203X) did not reduce the effects of GnRH on GH gene expression. Together, these results suggest that, in contrast to secretion, conventional and novel PKCs are not involved in GnRH-stimulated increases in GH mRNA levels in the goldfish pituitary. Instead, PD98059 inhibited GnRH-induced GH gene expression, suggesting that the ERK signaling pathway is involved. The results presented here provide novel insights into the functional specificity of GnRH-induced signaling and the regulation of GH gene expression.


1994 ◽  
Vol 72 (04) ◽  
pp. 573-577 ◽  
Author(s):  
Keiichiro Kizaki ◽  
Hidemi Ishii ◽  
Shuichi Horie ◽  
Mutsuyoshi Kazama

SummaryThe expression of thrombomodulin (TM), an antithrombotic factor, was investigated during neutrophilic differentiation of the HL-60 human myeloblastic cell line treated with d\\-trans retinoic acid (ATRA) or dimethyl sulfoxide (DMSO). Differentiation of the cells into neutrophilic cells progressed in a time- and dose-dependent fashion with ATRA or DMSO, as confirmed by the characteristic appearance of nitroblue tetrazolium (NBT) reduction and phagocytic activities, without induction of nonspecific esterase activity. TM antigen and cofactor activity for thrombin-dependent protein C activation were not detected in untreated HL-60 cells and the cells cultured with DMSO, but were expressed in a time-dependent manner in the cells cultured with ATRA. The level of TM expression in the HL-60 cells was not dose-dependent on ATRA concentrations, but maximum TM expression was obtained at 10−7 M ATRA. TM expression levels decreased in cells cultured with greater than 10−6 M ATRA, although the extent of cell differentiation into neutrophilic cells progressed at the higher ATRA concentrations. Since the TM antigen levels in the ATRA-treated cells also paralleled the TM mRNA levels, the data suggests that TM induction in the HL-60 cells cultured with ATRA reflected the levels of TM biosynthesis and was independent of HL-60 differentiation into neutrophilic cells. It was postulated that the appearance of TM with cofactor activity in neutrophilic cells differentiated from leukemic cells may contribute to prevention of vascular thrombosis in differentiation therapy of patients with acute promyelocytic leukemia by ATRA.


1996 ◽  
Vol 270 (4) ◽  
pp. H1462-H1468 ◽  
Author(s):  
B. S. Wung ◽  
J. J. Cheng ◽  
Y. J. Chao ◽  
J. Lin ◽  
Y. J. Shyy ◽  
...  

The effects of mechanical strain on monocyte chemotactic protein-1 (MCP-1) secretion were examined on human endothelial cells (ECs) grown on a flexible membrane base. MCP-1 release into culture medium from strained ECs was demonstrated to be time and strain dose dependent. Northern blot analysis demonstrated a mainly serum-independent 1.8-fold induction of MCP-1 mRNA levels in ECs strained at 15 kPa compared with unstrained controls. ECs treated with actinomycin D abolished this strain-induced expression. Strained ECs at the periphery of wells showed higher MCP-1 gene expression than ECs at the center. Pretreatment of ECs with either cytochalasin D or phalloidin did not abolish strain-induced gene expression. ECs pretreated with stretch-activated ion channel blocker gadolinium or with ryanodine to deplete intracellular stored Ca2+ strongly inhibited the strain-induced MCP-1 levels. We conclude that 1) cyclical strain can modulate the secretion of MCP-1 in a dose-dependent manner, 2) strain-induced MCP-1 production is mediated by increasing MCP-1 mRNA levels via transcription, 3) cytoskeletal rearrangement is not essential for this strain-induced MCP-1 expression, and 4) both Ca2+ influx via stretch-activated ion channels and intracellular Ca2+ release contribute to the strain-induced effect. Such strain-induced MCP-1 secretion might contribute to the trapping of monocytes in the subendothelial space to initiate atherogenesis.


1992 ◽  
Vol 132 (3) ◽  
pp. R1-R4 ◽  
Author(s):  
Y. Nishi ◽  
M. Haji ◽  
S. Tanaka ◽  
T. Yanase ◽  
R. Takayanagi ◽  
...  

ABSTRACT The effect of human recombinant activin-A on adrenal steroidogenesis was studied in cultured bovine adrenocortical cells. Activin-A significantly reduced cortisol output from ACTH (10nmol/l)-stimulated adrenocortical cells incubated for 24 hours in a dose-dependent manner (10, 100 and 500ng activin-A /ml suppressed cortisol secretion by 19, 33 and 40%), although no significant effect was observed in the case of 3 h incubation. Dehydroepiandrosterone (DHEA) secretion from ACTH-stimulated adrenocortical cells incubated for 24 h was also decreased by the addition of activin-A in a dose-dependent manner. (10, 100 and 500ng activin-A /ml suppressed DHEA secretion by 22, 56 and 58%). These inhibitory effects of activin-A (100ng/ml) on cortisol and DHEA secretion were partially blocked by the addition of follistatin / FSH-Suppressing Protein (200ng/ml). In contrast, activin-A treatment resulted in no significant decrease in aldosterone secretion. There were no significant effects of activin-A on basal secretions of cortisol, DHEA or aldosterone from adrenocortical cells. These results suggest that activin-A has a direct inhibitory effect on ACTH-stimulated bovine adrenocortical steroidogenesis.


2011 ◽  
Vol 107 (9) ◽  
pp. 1254-1273 ◽  
Author(s):  
Cécile Gladine ◽  
Nicole C. Roy ◽  
Jean-Paul Rigaudière ◽  
Brigitte Laillet ◽  
Georges Da Silva ◽  
...  

Long-chain (LC) n-3 PUFA have a broad range of biological properties that can be achieved at the gene expression level. This has been well described in liver, where LC n-3 PUFA modulate the expression of genes related to lipid metabolism. However, the complexity of biological pathway modulations and the nature of bioactive molecules are still under investigation. The present study aimed to investigate the dose–response effects of LC n-3 PUFA on the production of peroxidised metabolites, as potential bioactive molecules, and on global gene expression in liver. Hypercholesterolaemic rabbits received by daily oral administration (7 weeks) either oleic acid-rich oil or a mixture of oils providing 0·1, 0·5 or 1 % (groups 1, 2 and 3 respectively) of energy as DHA. Levels of specific peroxidised metabolites, namely 4-hydroxyhexenal (4-HHE)–protein adducts, issued from LC n-3 PUFA were measured by GC/MS/MS in liver in parallel to transcription profiling. The intake of LC n-3 PUFA increased, in a dose-dependent manner, the hepatic production of 4-HHE. At the highest dose, LC n-3 PUFA provoked an accumulation of TAG in liver, which can be directly linked to increased mRNA levels of lipoprotein hepatic receptors (LDL-receptor and VLDL-receptor). In groups 1 and 2, the mRNA levels of microsomal TAG transfer protein decreased, suggesting a possible new mechanism to reduce VLDL secretion. These modulations of genes related to lipoprotein metabolism were independent of PPARα signalling but were probably linked to the activation of the farnesol X receptor pathway by LC n-3 PUFA and/or their metabolites such as HHE.


2014 ◽  
Vol 306 (4) ◽  
pp. C407-C414 ◽  
Author(s):  
Wei-Hwa Lee ◽  
Ming-Hui Chung ◽  
Yu-Hui Tsai ◽  
Ju-Ling Chang ◽  
Huei-Mei Huang

Interferon (IFN)-γ is a proinflammatory cytokine that is linked to erythropoiesis inhibition and may contribute to anemia. However, the mechanism of IFN-γ-inhibited erythropoiesis is unknown. Activin A, a member of the transforming growth factor (TGF)-β superfamily, induces the erythropoiesis of hematopoietic progenitor cells. In this study, a luciferase reporter assay showed that IFN-γ suppressed activin A-induced ζ-globin promoter activation in K562 erythroblast cells in a dose-dependent manner. Activin A reversed the suppressive effect of IFN-γ on the luciferase activity of ζ-globin promoter in a dose-dependent manner. IFN-γ also suppressed the activation of activin A-induced α-globin promoter. IFN-γ reduced the mRNA expression of α-globin, ζ-globin, NF-E2p45, and GATA-1 induced by activin A. The results also showed that IFN-γ induced c-Jun expression when NF-κBp65 and c-Jun bound to two AP-1-binding sites on the c-Jun promoter. The luciferase activity of α-globin and ζ-globin promoters were enhanced by wild-type c-Jun and eliminated by dominant-negative (DN) c-Jun. The suppressive effects of IFN-γ on the mRNA expression of α-globin and ζ-globin were absent in cells expressing DN c-Jun. The ability of NF-E2 to enhance activin A-induced ζ-globin promoter activation decreased when c-Jun was present, and IFN-γ treatment further enhanced the decreasing effect of c-Jun. Chromatin immunoprecipitation revealed that NF-E2p45 bound to the upstream regulatory element (HS-40) of the α-globin gene cluster in response to activin A, whereas c-Jun eliminated this binding. These results suggest that IFN-γ modulates NF-κB/c-Jun to antagonize activin A-mediated NF-E2 transcriptional activity on globin gene expression.


1990 ◽  
Vol 125 (2) ◽  
pp. 251-256 ◽  
Author(s):  
S. Morita ◽  
K. Matsuo ◽  
M. Tsuruta ◽  
S. Leng ◽  
S. Yamashita ◽  
...  

ABSTRACT We have previously demonstrated that retinoic acid (RA) as well as thyroid hormone stimulates GH gene expression. To clarify the relationship between the action of RA and thyroid hormone, pituitary-specific gene expression was investigated further in rat pituitary cells. Rat clonal pituitary cells, GH3, were treated with RA with or without tri-iodothyronine (T3) for up to 3 days. After treatment with 10–1000 nmol RA/1 with or without 0·1–10 nmol T3/1, medium was collected for radioimmunoassay and cells were subjected to RNA extraction, and GH and prolactin gene expression was analysed using 32P-labelled rat GH and rat prolactin cDNA probes respectively. The data demonstrated the dose–responsive manner of the stimulatory effects of RA and T3 on GH secretion with T3-depleted media. The action of RA was additive to that of T3 for GH secretion when maximum effective doses of RA or T3 were used. Using dot blot and Northern gel analysis, it was shown that RA increased GH mRNA levels in T3-depleted media, and that this action of RA was additive to that of T3 on the induction of GH mRNA levels. In contrast, neither RA nor T3 stimulated the secretion of prolactin and prolactin mRNA levels in these cells. Our results indicate that RA stimulates GH mRNA increment and GH secretion in T3-depleted media, and that the stimulatory effect of RA is additive to the maximum effective dose of T3. Journal of Endocrinology (1990) 125, 251–256


1994 ◽  
Vol 143 (1) ◽  
pp. 157-164 ◽  
Author(s):  
J G Gong ◽  
D McBride ◽  
T A Bramley ◽  
R Webb

Abstract Our previous studies have demonstrated that physiological concentrations of metabolic hormones, including recombinant bovine somatotrophin (BST), insulin-like growth factor-I (IGF-I) and insulin, can significantly stimulate the proliferation of bovine granulosa cells cultured under serum-free conditions. In this study we investigated the effects of these factors on bovine granulosa cell steroidogenesis using the same culture system. Bovine granulosa cells were obtained from antral follicles classified into three size classes: small, <5 mm; medium-sized, 5–10 mm and large, >10 mm in diameter. Whilst not affecting steroidogenesis by granulosa cells from small and medium-sized follicles, BST (10–1000 ng/ml) stimulated the secretion of both oestradiol and progesterone by granulosa cells from large follicles in a dose-dependent manner. Insulin (1–1000 ng/ml) and IGF-I (10–1000 ng/ml) stimulated the secretion of oestradiol and progesterone by granulosa cells from all three size categories of follicles in a dose-dependent manner. FSH (200 ng/ml) alone increased progesterone secretion by granulosa cells from all three size classes of follicles, but had no effect on oestradiol secretion by granulosa cells. Both IGF-I (200 ng/ml) and insulin (30 ng/ml) acted in synergy with FSH (200 ng/ml) to stimulate steroidogenesis by granulosa cells from all three size categories of follicles, but no such interaction was observed between BST (50 ng/ml) and FSH (200 ng/ml). In conclusion, BST, IGF-I and insulin significantly influence the steroidogenic activity of bovine granulosa cells cultured under serum-free conditions. However, unlike their effects on cell proliferation, the minimal effective concentrations of these factors required to stimulate granulosa cell steroidogenesis were higher than those observed in our previous studies in vivo. Journal of Endocrinology (1994) 143, 157–164


1998 ◽  
Vol 83 (2) ◽  
pp. 448-452
Author(s):  
H. F. Erden ◽  
I. H. Zwain ◽  
H. Asakura ◽  
S. S. C. Yen

Recently, we reported that the thecal compartment of the human ovary contains a CRF system replete with gene expression and protein for corticotropin-releasing factor (CRF), CRF-Receptor 1 (CRF-R1), and the blood-derived high affinity CRF-binding protein (CRF-BP). Granulosa cells are devoid of the CRF system. The parallel increases in intensity of CRF, CRF-R1, and 17α-hydroxylase messenger ribonucleic acid (mRNA) and proteins in thecal cells with follicular maturation suggest that the intraovarian CRF system may play an autocrine role regulating androgen biosynthesis, with a downstream effect on estrogen production by granulosa cells. The functionality of the ovarian CRF system may be conditioned by the relative presence of plasma-derived CRF-BP by virtue of its localization of protein, but not transcript in thecal cells and its ability to compete with CRF for the CRF receptor. To further these findings, in the present study we have examined the effect of CRF on LH-stimulated 17α-hydroxylase (P450c17) gene expression and androgen production by isolated thecal cells from human ovarian follicles (11–13 mm). During the 48-h culture, addition of LH (10 ng/mL) to the medium increased by 5- and 6-fold dehydroepiandrosterone and androstenedione production by thecal cells. Remarkably, the LH-stimulated, but not basal, androgen production was inhibited by CRF in a time- and dose-dependent manner. The half-maximal (ID50) effect dose of CRF occurred at 5 × 10−8 mol/L, and at a maximal concentration of 10−6 mol/L, CRF completely inhibited LH-stimulated androgen production. This inhibitory effect of CRF became evident at 12 h (45%), and by 24 h the effect was more pronounced, with a 70% reduction from baseline. As determined by Northern analyses, CRF dose dependently decreased LH-stimulated P450c17 mRNA levels, with a maximal inhibition of 85% P450c17 gene expression at a CRF concentration of 10−6 mol/L. With the addition of 10−6 mol/L of the antagonist α-helical CRF-(9–41), the inhibitory effect of CRF was partially reversed for both P450c17 mRNA (75%) and androgen production (50%), indicating the CRF-R1-mediated event. In conclusion, the present study demonstrated a potent inhibitory effect of CRF on LH-stimulated dehydroepiandrosterone and androstenedione production that appears to be mediated through the reduction of P450c17 gene expression. Thus, the ovarian CRF system may function as autocrine regulators for androgen biosynthesis in the thecal cell compartment to maintain optimal substrate for estrogen biosynthesis by granulosa cells. Further studies to define the role of CRF-BP in the endocrine modulation of the intraovarian CRF system are needed.


Sign in / Sign up

Export Citation Format

Share Document