Coordination of 17β-estradiol-dependent cell proliferation requires diverse post-translational modifications

2013 ◽  
Author(s):  
Rosa Piergiorgio La ◽  
Valeria Pesiri ◽  
Maria Marino ◽  
Filippo Acconcia
2021 ◽  
Vol 22 (6) ◽  
pp. 2915
Author(s):  
Manuela Cipolletti ◽  
Stefania Bartoloni ◽  
Claudia Busonero ◽  
Martina Parente ◽  
Stefano Leone ◽  
...  

17β-estradiol (E2) exerts its physiological effects through the estrogen receptor α (i.e., ERα). The E2:ERα signaling allows the regulation of cell proliferation. Indeed, E2 sustains the progression of ERα positive (ERα+) breast cancers (BCs). The presence of ERα at the BC diagnosis drives their therapeutic treatment with the endocrine therapy (ET), which restrains BC progression. Nonetheless, many patients develop metastatic BCs (MBC) for which a treatment is not available. Consequently, the actual challenge is to complement the drugs available to fight ERα+ primary and MBC. Here we exploited a novel anti-estrogen discovery platform to identify new Food and Drug Administration (FDA)-approved drugs inhibiting E2:ERα signaling to cell proliferation in cellular models of primary and MBC cells. We report that the anti-fungal drugs clotrimazole (Clo) and fenticonazole (Fenti) induce ERα degradation and prevent ERα transcriptional signaling and proliferation in cells modeling primary and metastatic BC. The anti-proliferative effects of Clo and Fenti occur also in 3D cancer models (i.e., tumor spheroids) and in a synergic manner with the CDK4/CDK6 inhibitors palbociclib and abemaciclib. Therefore, Clo and Fenti behave as “anti-estrogens”-like drugs. Remarkably, the present “anti-estrogen” discovery platform represents a valuable method to rapidly identify bioactive compounds with anti-estrogenic activity.


2011 ◽  
Vol 63 (1) ◽  
pp. 189-194 ◽  
Author(s):  
Kwiecińska Patrycja ◽  
Wróbel Anna ◽  
Ewa Ł. Gregoraszczuk

PLoS Genetics ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. e1006564 ◽  
Author(s):  
Yinzi Liu ◽  
Diane S. Sepich ◽  
Lilianna Solnica-Krezel

2021 ◽  
Author(s):  
Trina Roy ◽  
Sinchan Ghosh ◽  
Bapi Saha ◽  
Sabyasachi Bhattacharya

Abstract Cell proliferation often experiences a density-dependent intrinsic proliferation rate (IPR) and negative feedback from growth-inhibiting molecules in culture media. The lack of flexible models with explanatory parameters fails to capture such a proliferation mechanism. We propose an extended logistic growth law with the density-dependent IPR and additional negative feedback. The extended parameters of the proposed model can be interpreted as density-dependent cell-cell cooperation and negative feedback on cell proliferation. Moreover, we incorporate further density regulation for flexibility in the model through environmental resistance on cells. The proposed growth law has similarities with the strong Allee model and harvesting phenomenon. We also develop the stochastic analog of the deterministic model by representing possible heterogeneity in growth-inhibiting molecules and environmental perturbation of the culture setup as correlated multiplicative and additive noises. The model provides a maximum sustainable stable cell density (MSSCD) and a new fitness measure for proliferative cells. The proposed model shows superiority to the logistic law after fitting to real cell culture datasets. We illustrate both MSSCD and the new cell fitness for a range of parameters. The cell density distributions reveal the chance of overproliferation, underproliferation, or decay for different parameter sets under the deterministic and stochastic setups.


2020 ◽  
Vol 11 ◽  
Author(s):  
Christian Binder ◽  
Felix Sellberg ◽  
Filip Cvetkovski ◽  
Erik Berglund ◽  
David Berglund

Antibodies are commonly used in organ transplant induction therapy and to treat autoimmune disorders. The effects of some biologics on the human immune system remain incompletely characterized and a deeper understanding of their mechanisms of action may provide useful insights for their clinical application. The goal of this study was to contrast the mechanistic properties of siplizumab with Alemtuzumab and rabbit Anti-Thymocyte Globulin (rATG). Mechanistic assay systems investigating antibody-dependent cell-mediated cytotoxicity, antibody-dependent cell phagocytosis and complement-dependent cytotoxicity were used to characterize siplizumab. Further, functional effects of siplizumab, Alemtuzumab, and rATG were investigated in allogeneic mixed lymphocyte reaction. Changes in T cell activation, T cell proliferation and frequency of naïve T cells, memory T cells and regulatory T cells induced by siplizumab, Alemtuzumab and rATG in allogeneic mixed lymphocyte reaction were assessed via flow cytometry. Siplizumab depleted T cells, decreased T cell activation, inhibited T cell proliferation and enriched naïve and bona fide regulatory T cells. Neither Alemtuzumab nor rATG induced the same combination of functional effects. The results presented in this study should be used for further in vitro and in vivo investigations that guide the clinical use of immune modulatory biologics.


2002 ◽  
Vol 192 (1-2) ◽  
pp. 187-195 ◽  
Author(s):  
Nicoletta Di Simone ◽  
Alan L Schneyer ◽  
Dario Caliandro ◽  
Roberta Castellani ◽  
Alessandro Caruso

Sign in / Sign up

Export Citation Format

Share Document