scholarly journals Histone deacetylase 5 regulates glucose uptake and insulin action in muscle cells

2012 ◽  
Vol 49 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Suryaprakash Raichur ◽  
Song Hooi Teh ◽  
Kenji Ohwaki ◽  
Vidhi Gaur ◽  
Yun Chau Long ◽  
...  

The class IIa histone deacetylases (HDACs) act as transcriptional repressors by altering chromatin structure through histone deacetylation. This family of enzymes regulates muscle development and phenotype, through regulation of muscle-specific genes including myogenin and MyoD (MYOD1). More recently, class IIa HDACs have been implicated in regulation of genes involved in glucose metabolism. However, the effects of HDAC5 on glucose metabolism and insulin action have not been directly assessed. Knockdown of HDAC5 in human primary muscle cells increased glucose uptake and was associated with increased GLUT4 (SLC2A4) expression and promoter activity but was associated with reduced GLUT1 (SLC2A1) expression. There was no change in PGC-1α (PPARGC1A) expression. The effects of HDAC5 knockdown on glucose metabolism were not due to alterations in the initiation of differentiation, as knockdown of HDAC5 after the onset of differentiation also resulted in increased glucose uptake and insulin-stimulated glycogen synthesis. These data show that inhibition of HDAC5 enhances metabolism and insulin action in muscle cells. As these processes in muscle are dysregulated in metabolic disease, HDAC inhibition could be an effective therapeutic strategy to improve muscle metabolism in these diseases. Therefore, we also examined the effects of the pan HDAC inhibitor, Scriptaid, on muscle cell metabolism. In myotubes, Scriptaid increased histone 3 acetylation, GLUT4 expression, glucose uptake and both oxidative and non-oxidative metabolic flux. Together, these data suggest that HDAC5 regulates muscle glucose metabolism and insulin action and that HDAC inhibitors can be used to modulate these parameters in muscle cells.

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Nataliya A. Babenko ◽  
Vitalina S. Kharchenko

Background. The role of phospholipase D (PLD) as a positive modulator of glucose uptake activation by insulin in muscle and adipose cells has been demonstrated. The role of PLD in the regulation of glucose metabolism by insulin in the primary hepatocytes has been determined in this study.Methods. For this purpose, we studied effects of inhibitors of PLD on glucose uptake and glycogen synthesis stimulation by insulin. To determine the PLD activity, the method based on determination of products of transphosphatidylation reaction, phosphatidylethanol or phosphatidylbutanol, was used.Results. Inhibition of PLD by a general antagonist (1-butanol) or specific inhibitor, halopemide, or N-hexanoylsphingosine, or by cellular ceramides accumulated in doxorubicin-treated hepatocytes decreased insulin-stimulated glucose metabolism. Doxorubicin-induced hepatocytes resistance to insulin action could be abolished by inhibition of ceramide production. Halopemide could nullify this effect. Addition of propranolol, as well as inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) (wortmannin, LY294002) or suppressors of Akt phosphorylation/activity, luteolin-7-O-glucoside or apigenin-7-O-glucoside, to the culture media could block cell response to insulin action.Conclusion. PLD plays an important role in the insulin signaling in the hepatocytes. PLD is activated downstream of PI3-kinase and Akt and is highly sensitive to ceramide content in the liver cells.


2020 ◽  
Vol 9 (11) ◽  
pp. 1103-1113
Author(s):  
Selina Mäkinen ◽  
Neeta Datta ◽  
Yen H Nguyen ◽  
Petro Kyrylenko ◽  
Markku Laakso ◽  
...  

Objectives Simvastatin use is associated with muscular side effects, and increased risk for type 2 diabetes (T2D). In clinical use, simvastatin is administered in inactive lipophilic lactone-form, which is then converted to active acid-form in the body. Here, we have investigated if lactone- and acid-form simvastatin differentially affect glucose metabolism and mitochondrial respiration in primary human skeletal muscle cells. Methods Muscle cells were exposed separately to lactone- and acid-form simvastatin for 48 h. After pre-exposure, glucose uptake and glycogen synthesis were measured using radioactive tracers; insulin signalling was detected with Western blotting; and glycolysis, mitochondrial oxygen consumption and ATP production were measured with Seahorse XFe96 analyzer. Results Lactone-form simvastatin increased glucose uptake and glycogen synthesis, whereas acid-form simvastatin did not affect glucose uptake and decreased glycogen synthesis. Phosphorylation of insulin signalling targets Akt substrate 160 kDa (AS160) and glycogen synthase kinase 3β (GSK3β) was upregulated with lactone-, but not with acid-form simvastatin. Exposure to both forms of simvastatin led to a decrease in glycolysis and glycolytic capacity, as well as to a decrease in mitochondrial respiration and ATP production. Conclusions These data suggest that lactone- and acid-forms of simvastatin exhibit differential effects on non-oxidative glucose metabolism as lactone-form increases and acid-form impairs glucose storage into glycogen, suggesting impaired insulin sensitivity in response to acid-form simvastatin. Both forms profoundly impair oxidative glucose metabolism and energy production in human skeletal muscle cells. These effects may contribute to muscular side effects and risk for T2D observed with simvastatin use.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1120 ◽  
Author(s):  
Levi Evans ◽  
Bradley Ferguson

Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.


2019 ◽  
Vol 20 (2) ◽  
pp. 346 ◽  
Author(s):  
Andreas von Knethen ◽  
Bernhard Brüne

Sepsis is characterized by dysregulated gene expression, provoking a hyper-inflammatory response occurring in parallel to a hypo-inflammatory reaction. This is often associated with multi-organ failure, leading to the patient’s death. Therefore, reprogramming of these pro- and anti-inflammatory, as well as immune-response genes which are involved in acute systemic inflammation, is a therapy approach to prevent organ failure and to improve sepsis outcomes. Considering epigenetic, i.e., reversible, modifications of chromatin, not altering the DNA sequence as one tool to adapt the expression profile, inhibition of factors mediating these changes is important. Acetylation of histones by histone acetyltransferases (HATs) and initiating an open-chromatin structure leading to its active transcription is counteracted by histone deacetylases (HDACs). Histone deacetylation triggers a compact nucleosome structure preventing active transcription. Hence, inhibiting the activity of HDACs by specific inhibitors can be used to restore the expression profile of the cells. It can be assumed that HDAC inhibitors will reduce the expression of pro-, as well as anti-inflammatory mediators, which blocks sepsis progression. However, decreased cytokine expression might also be unfavorable, because it can be associated with decreased bacterial clearance.


1986 ◽  
Vol 250 (2) ◽  
pp. E137-E143 ◽  
Author(s):  
T. A. Davis ◽  
S. Klahr ◽  
E. D. Tegtmeyer ◽  
D. F. Osborne ◽  
T. L. Howard ◽  
...  

Effects of insulin on glycogen synthesis (GS), glycolytic utilization (GU), and glucose uptake (GT) were studied in isolated epitrochlearis muscles from exercise-trained or sedentary rats during recovery from acute exercise or at rest. During the 1st h after acute exercise, the enhanced basal and insulin-stimulated GT was directed mainly toward replenishment of glycogen but basal GU was also increased. During the second through third hours after exercise, basal GS decreased but remained greater than rest and basal GU and GT returned to normal. Insulin sensitivity of these parameters was enhanced. Training alone reduced basal GS but enhanced insulin sensitivity of GT and GU. Training reduced the acute exercise-stimulated increase in basal and insulin sensitivity of GS during recovery from acute exercise, probably due to elevated glycogen stores. Thus recovery from acute exercise or training, either alone or in combination, enhances insulin stimulated GT in muscle; however, the increased glucose is primarily channeled toward GS after acute exercise, which is reduced by prior training and is directed to GU in trained animals either at rest or after acute exercise.


1995 ◽  
Vol 269 (6) ◽  
pp. E1052-E1058 ◽  
Author(s):  
R. Potashnik ◽  
N. Kozlovsky ◽  
S. Ben-Ezra ◽  
A. Rudich ◽  
N. Bashan

Possible association between the degree of iron load and glucose metabolism has been postulated by both in vivo and in vitro studies. Because skeletal muscle plays a major role in whole body glucose utilization, we evaluated the effect of iron chelators deferoxamine (DFO) and bipyridyl (Bip) on glucose metabolism and transport in cultured L6 muscle cells. Bip (0.1 mM) or DFO (0.5 mM) added for 24 h to the culture medium increased glucose consumption, lactate production, and [14C]glucose incorporation into glycogen by approximately twofold. 2-Deoxy-glucose uptake by L6 myotubes increased time dependently, reaching a 5-fold and 2.5-fold increase after 12 h for Bip and DFO, respectively. Insulin induced a 2.5-fold increase in glucose uptake in untreated cells, which was additive to the chelator's effect. Iron chelator-induced glucose transport stimulation was inhibited by cycloheximide (2.5 micrograms/ml), indicating dependence on de novo protein synthesis. Increases in GLUT-1 protein and mRNA concentration, without changes in GLUT-4, were found to be responsible for iron chelator effects. We conclude that L6 cells adapt to reduction in iron availability by increasing glucose utilization through an enhanced expression of GLUT-1, without losing their physiological response to insulin.


Endocrinology ◽  
2011 ◽  
Vol 152 (12) ◽  
pp. 4581-4588 ◽  
Author(s):  
Sébastien Bergeron ◽  
Marie-Julie Dubois ◽  
Kerstin Bellmann ◽  
Michael Schwab ◽  
Nancy Larochelle ◽  
...  

The protein tyrosine phosphatase (PTPase) Src-homology 2-domain-containing phosphatase (SHP)-1 was recently reported to be a novel regulator of insulin's metabolic action. In order to examine the role of this PTPase in skeletal muscle, we used adenovirus (AdV)-mediated gene transfer to express an interfering mutant of SHP-1 [dominant negative (DN)SHP-1; mutation C453S] in L6 myocytes. Expression of DNSHP-1 increased insulin-induced Akt serine-threonine kinase phosphorylation and augmented glucose uptake and glycogen synthesis. Pharmacological inhibition of glucose transporter type 4 (GLUT4) activity using indinavir and GLUT4 translocation assays revealed an important role for this transporter in the increased insulin-induced glucose uptake in DNSHP-1-expressing myocytes. Both GLUT4 mRNA and protein expression were also found to be increased by DNSHP-1 expression. Furthermore, AdV-mediated delivery of DNSHP-1 in skeletal muscle of transgenic mice overexpressing Coxsackie and AdV receptor also enhanced GLUT4 protein expression. Together, these findings confirm that SHP-1 regulates muscle insulin action in a cell-autonomous manner and further suggest that the PTPase negatively modulates insulin action through down-regulation of both insulin signaling to Akt and GLUT4 translocation, as well as GLUT4 expression.


1989 ◽  
Vol 66 (2) ◽  
pp. 876-885 ◽  
Author(s):  
E. A. Richter ◽  
K. J. Mikines ◽  
H. Galbo ◽  
B. Kiens

The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2 consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp even though indirect estimates indicated net glycogen synthesis. In contrast, in exercised muscle estimated and biopsy-verified increases in muscle glycogen concentration agreed. Local contraction-induced increases in insulin sensitivity and responsiveness play an important role in postexercise recovery of human skeletal muscle.


2000 ◽  
Vol 279 (1) ◽  
pp. E108-E115
Author(s):  
Owen P. McGuinness ◽  
Joseph Ejiofor ◽  
D. Brooks Lacy ◽  
Nancy Schrom

We previously reported that infection decreases hepatic glucose uptake when glucose is given as a constant peripheral glucose infusion (8 mg · kg−1· min−1). This impairment persisted despite greater hyperinsulinemia in the infected group. In a normal setting, hepatic glucose uptake can be further enhanced if glucose is given gastrointestinally. Thus the aim of this study was to determine whether hepatic glucose uptake is impaired during an infection when glucose is given gastrointestinally. Thirty-six hours before study, a sham (SH, n = 7) or Escherichia coli-containing (2 × 109organisms/kg; INF; n = 7) fibrin clot was placed in the peritoneal cavity of chronically catheterized dogs. After the 36 h, a glucose bolus (150 mg/kg) followed by a continuous infusion (8 mg · kg−1· min−1) of glucose was given intraduodenally to conscious dogs for 240 min. Tracer ([3-3H]glucose and [U-14C]glucose) and arterial-venous difference techniques were used to assess hepatic and intestinal glucose metabolism. Infection increased hepatic blood flow (35 ± 5 vs. 47 ± 3 ml · kg−1· min−1; SH vs. INF) and basal glucose rate of appearance (2.1 ± 0.2 vs. 3.3 ± 0.1 mg · kg−1· min−1). Arterial insulin concentrations increased similarly in SH and INF during the last hour of glucose infusion (38 ± 8 vs. 46 ± 20 μU/ml), and arterial glucagon concentrations fell (62 ± 14 to 30 ± 3 vs. 624 ± 191 to 208 ± 97 pg/ml). Net intestinal glucose absorption was decreased in INF, attenuating the increase in blood glucose caused by the glucose load. Despite this, net hepatic glucose uptake (1.6 ± 0.8 vs. 2.4 ± 0.9 mg · kg−1· min−1; SH vs. INF) and consequently tracer-determined glycogen synthesis (1.3 ± 0.3 vs. 1.0 ± 0.3 mg · kg−1· min−1) were similar between groups. In summary, infection impairs net glucose absorption, but not net hepatic glucose uptake or glycogen deposition, when glucose is given intraduodenally.


Sign in / Sign up

Export Citation Format

Share Document