scholarly journals Histone Deacetylation Inhibitors as Therapy Concept in Sepsis

2019 ◽  
Vol 20 (2) ◽  
pp. 346 ◽  
Author(s):  
Andreas von Knethen ◽  
Bernhard Brüne

Sepsis is characterized by dysregulated gene expression, provoking a hyper-inflammatory response occurring in parallel to a hypo-inflammatory reaction. This is often associated with multi-organ failure, leading to the patient’s death. Therefore, reprogramming of these pro- and anti-inflammatory, as well as immune-response genes which are involved in acute systemic inflammation, is a therapy approach to prevent organ failure and to improve sepsis outcomes. Considering epigenetic, i.e., reversible, modifications of chromatin, not altering the DNA sequence as one tool to adapt the expression profile, inhibition of factors mediating these changes is important. Acetylation of histones by histone acetyltransferases (HATs) and initiating an open-chromatin structure leading to its active transcription is counteracted by histone deacetylases (HDACs). Histone deacetylation triggers a compact nucleosome structure preventing active transcription. Hence, inhibiting the activity of HDACs by specific inhibitors can be used to restore the expression profile of the cells. It can be assumed that HDAC inhibitors will reduce the expression of pro-, as well as anti-inflammatory mediators, which blocks sepsis progression. However, decreased cytokine expression might also be unfavorable, because it can be associated with decreased bacterial clearance.

Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1120 ◽  
Author(s):  
Levi Evans ◽  
Bradley Ferguson

Approximately 5.7 million U.S. adults have been diagnosed with heart failure (HF). More concerning is that one in nine U.S. deaths included HF as a contributing cause. Current HF drugs (e.g., β-blockers, ACEi) target intracellular signaling cascades downstream of cell surface receptors to prevent cardiac pump dysfunction. However, these drugs fail to target other redundant intracellular signaling pathways and, therefore, limit drug efficacy. As such, it has been postulated that compounds designed to target shared downstream mediators of these signaling pathways would be more efficacious for the treatment of HF. Histone deacetylation has been linked as a key pathogenetic element for the development of HF. Lysine residues undergo diverse and reversible post-translational modifications that include acetylation and have historically been studied as epigenetic modifiers of histone tails within chromatin that provide an important mechanism for regulating gene expression. Of recent, bioactive compounds within our diet have been linked to the regulation of gene expression, in part, through regulation of the epi-genome. It has been reported that food bioactives regulate histone acetylation via direct regulation of writer (histone acetyl transferases, HATs) and eraser (histone deacetylases, HDACs) proteins. Therefore, bioactive food compounds offer unique therapeutic strategies as epigenetic modifiers of heart failure. This review will highlight food bio-actives as modifiers of histone deacetylase activity in the heart.


2016 ◽  
Vol 12 (02) ◽  
pp. 96
Author(s):  
Andrew Spencer ◽  
Sridurga Mithraprabhu ◽  
◽  

There is a critical need for more effective therapies in multiple myeloma (MM) since all patients eventually relapse following front-line treatment. A variety of both genetic and epigenetic abnormalities may be present in MM, the latter including DNA and histone methylation and histone deacetylation, and are thought to contribute to the pathogenesis of the disease. For example, global methylation analysis in MM has identified inactivated tumour suppressor genes that are prognostically important. Through their ability to acetylate histones and cytoplasmic proteins, histone deacetylases (HDAC) influence a wide variety of cellular functions, such as proliferation, differentiation and apoptosis. Increased class 1 HDAC expression has been linked in solid tumours with more locally advanced, de-differentiated and proliferative tumours, and with poor prognosis in MM. HDAC inhibitors, panobinostat and ricolinostat, have been demonstrated to be effective in combination with bortezomib and dexamethasone in newly diagnosed patients with MM and in heavily pre-treated patients with advanced MM. HDAC inhibitor–monoclonal antibody combinations are also being explored. The potential of HDAC inhibitors to improve outcome for patients with MM is evident but a greater understanding of their anti-tumour effects is needed.


2016 ◽  
Vol 21 (6) ◽  
pp. 643-652 ◽  
Author(s):  
Chia-Wen Hsu ◽  
David Shou ◽  
Ruili Huang ◽  
Thai Khuc ◽  
Sheng Dai ◽  
...  

Histone deacetylases (HDACs) are a class of epigenetic enzymes that regulate gene expression by histone deacetylation. Altered HDAC function has been linked to cancer and neurodegenerative diseases, making HDACs popular therapeutic targets. In this study, we describe a screening approach for identification of compounds that inhibit endogenous class I and II HDACs. A homogeneous, luminogenic HDAC I/II assay was optimized in a 1536-well plate format in several human cancer cell lines, including HCT116 and human neural stem cells. The assay confirmed 37 known HDAC inhibitors from two libraries of known epigenetics-active compounds. Using the assay, we identified a group of potential HDAC inhibitors by screening the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection of 2527 small-molecule drugs. The selected compounds showed similar HDAC I/II inhibitory potency and efficacy values in both HCT116 and neural stem cells. Several previously unidentified HDAC inhibitors were further evaluated and profiled for their selectivity against a panel of 10 HDAC I/II isoforms using fluorogenic HDAC biochemical assays. In summary, our results show that several novel HDAC inhibitors, including nafamostat and piceatannol, have been identified using the HDAC I/II cell-based assay, and multiple cell types have been validated for high-throughput screening of large chemical libraries.


2012 ◽  
Vol 49 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Suryaprakash Raichur ◽  
Song Hooi Teh ◽  
Kenji Ohwaki ◽  
Vidhi Gaur ◽  
Yun Chau Long ◽  
...  

The class IIa histone deacetylases (HDACs) act as transcriptional repressors by altering chromatin structure through histone deacetylation. This family of enzymes regulates muscle development and phenotype, through regulation of muscle-specific genes including myogenin and MyoD (MYOD1). More recently, class IIa HDACs have been implicated in regulation of genes involved in glucose metabolism. However, the effects of HDAC5 on glucose metabolism and insulin action have not been directly assessed. Knockdown of HDAC5 in human primary muscle cells increased glucose uptake and was associated with increased GLUT4 (SLC2A4) expression and promoter activity but was associated with reduced GLUT1 (SLC2A1) expression. There was no change in PGC-1α (PPARGC1A) expression. The effects of HDAC5 knockdown on glucose metabolism were not due to alterations in the initiation of differentiation, as knockdown of HDAC5 after the onset of differentiation also resulted in increased glucose uptake and insulin-stimulated glycogen synthesis. These data show that inhibition of HDAC5 enhances metabolism and insulin action in muscle cells. As these processes in muscle are dysregulated in metabolic disease, HDAC inhibition could be an effective therapeutic strategy to improve muscle metabolism in these diseases. Therefore, we also examined the effects of the pan HDAC inhibitor, Scriptaid, on muscle cell metabolism. In myotubes, Scriptaid increased histone 3 acetylation, GLUT4 expression, glucose uptake and both oxidative and non-oxidative metabolic flux. Together, these data suggest that HDAC5 regulates muscle glucose metabolism and insulin action and that HDAC inhibitors can be used to modulate these parameters in muscle cells.


2020 ◽  
Vol 5 (2) ◽  
pp. 57-62
Author(s):  
Masumeh Sanaei ◽  
Fraidoon Kavoosi

Objective: DNA methylation, the covalent addition of a methyl group to cytosine, and histone modification play an important role in the establishment and maintenance of the program of gene expression. The balance of histone acetylation is determined by the activities of two groups of enzymes including histone acetyltransferases (HATs) and histone deacetylases (HDACs). Histone deacetylation is generally associated with silencing gene expression resulting in several solid tumors. HDAC inhibitors (HDACIs) are the new class of potential anticancer compounds for the treatment of the solid and hematological cancers. The current study was designed to evaluate the effect of trichostatin A (TSA) on histone deacetylases 1, 2 and 3, p21Cip1/Waf1/Sdi1 (p21), p27Kip1 (p27), and p57Kip2 (p57) gene expression in breast cancer SK-BR-3 cell line. Materials and Methods: The breast cancer SK-BR-3 line was treated with TSA. To determine cell viability, cell apoptosis, and the relative expression level of the genes, MTT assay, cell apoptosis assay, and qRT-PCR were done respectively. Results: TSA significantly inhibited cell growth, and induced apoptosis. Furthermore, this compound increased p21, p27, and p57 and decreased histone deacetylases 1, 2 and 3 gene expression significantly. Conclusion: The TSA can reactivate the p21, p27, and p57 through down-regulation of histone deacetylases 1, 2 and 3 gene expression.


2015 ◽  
Vol 75 (3) ◽  
pp. 593-600 ◽  
Author(s):  
Maartje C P Cleophas ◽  
Tania O Crişan ◽  
Heidi Lemmers ◽  
Helga Toenhake-Dijkstra ◽  
Gianluca Fossati ◽  
...  

ObjectivesAcute gouty arthritis is caused by endogenously formed monosodium urate (MSU) crystals, which are potent activators of the NLRP3 inflammasome. However, to induce the release of active interleukin (IL)-1β, an additional stimulus is needed. Saturated long-chain free fatty acids (FFAs) can provide such a signal and stimulate transcription of pro-IL-1β. In contrast, the short-chain fatty acid butyrate possesses anti-inflammatory effects. One of the mechanisms involved is inhibition of histone deacetylases (HDACs). Here, we explored the effects of butyrate on MSU+FFA-induced cytokine production and its inhibition of specific HDACs.MethodsFreshly isolated peripheral blood mononuclear cells (PBMCs) from healthy donors were stimulated with MSU and palmitic acid (C16.0) in the presence or absence of butyrate or a synthetic HDAC inhibitor. Cytokine responses were measured with ELISA and quantitative PCR. HDAC activity was measured with fluorimetric assays.ResultsButyrate decreased C16.0+MSU-induced production of IL-1β, IL-6, IL-8 and IL-1β mRNA in PBMCs from healthy donors. Similar results were obtained in PBMCs isolated from patients with gout. Butyrate specifically inhibited class I HDACs. The HDAC inhibitor, panobinostat and the potent HDAC inhibitor, ITF-B, also decreased ex vivo C16.0+MSU-induced IL-1β production.ConclusionsIn agreement with the reported low inhibitory potency of butyrate, a high concentration was needed for cytokine suppression, whereas synthetic HDAC inhibitors showed potent anti-inflammatory effects at nanomolar concentrations. These novel HDAC inhibitors could be effective in the treatment of acute gout. Moreover, the use of specific HDAC inhibitors could even improve the efficacy and reduce any potential adverse effects.


2013 ◽  
Vol 4 (4) ◽  
pp. 319-333 ◽  
Author(s):  
Jessica Kukucka ◽  
Tessa Wyllie ◽  
Justin Read ◽  
Lauren Mahoney ◽  
Cenk Suphioglu

AbstractHistone acetyltransferases (HATs) and histone deacetylases (HDACs) promote histone posttranslational modifications, which lead to an epigenetic alteration in gene expression. Aberrant regulation of HATs and HDACs in neuronal cells results in pathological consequences such as neurodegeneration. Alzheimer’s disease is the most common neurodegenerative disease of the brain, which has devastating effects on patients and loved ones. The use of pan-HDAC inhibitors has shown great therapeutic promise in ameliorating neurodegenerative ailments. Recent evidence has emerged suggesting that certain deacetylases mediate neurotoxicity, whereas others provide neuroprotection. Therefore, the inhibition of certain isoforms to alleviate neurodegenerative manifestations has now become the focus of studies. In this review, we aimed to discuss and summarize some of the most recent and promising findings of HAT and HDAC functions in neurodegenerative diseases.


2007 ◽  
Vol 25 (26) ◽  
pp. 4051-4056 ◽  
Author(s):  
Kevin Camphausen ◽  
Philip J. Tofilon

Recently, strategies to enhance tumor radiosensitivity have begun to focus on targeting the molecules and processes that regulate cellular radioresponse. A molecular target that has begun to receive considerable attention is histone acetylation. Histone acetylation is determined by the dynamic interaction of two families of enzymes: histone acetylases and histone deacetylases (HDACs). Histone acetylation plays a role in regulating chromatin structure and gene expression—two parameters that have long been considered determinants of radioresponse. As a means of modifying histone acetylation status, considerable effort has been put into the development of inhibitors of HDAC activity. This has led to the generation of a relatively large number of structurally diverse compounds that can inhibit HDAC activity resulting in histone hyperacetylation. Many of the newer HDAC inhibitor compounds have been designed with better bioavailability or pharmacology than the first-generation compounds. Whereas a number of these second-generation HDAC inhibitors have antitumor activity in preclinical cancer models when delivered as single agents, early clinical data demonstrate only cytostasis when used as monotherapy. However, recent preclinical studies have indicated that HDAC inhibitors from structurally diverse classes can enhance both the in vitro and in vivo radiosensitivity of human tumor cell lines generated from a spectrum of solid tumors. HDAC inhibitors are in clinical trials as single modalities, in combination with chemotherapeutic agents, and recently, in combination with radiotherapy.


2020 ◽  
Author(s):  
Daniel Herp ◽  
Johannes Ridinger ◽  
Dina Robaa ◽  
Stephen A. Shinsky ◽  
Karin Schmidtkunz ◽  
...  

Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, esp. cancer. First HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement e.g. in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of the other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like spermine or spermidine. Hence, it also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin labelled acetyl spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10 mediated spermidine deacetylation in-vitro. Among those are potent inhibitors of neuroblastoma colony growth in culture that show accumulation of lysosomes, implicating disturbance of autophagic flux.


Genetics ◽  
2021 ◽  
Author(s):  
Hyoju Ban ◽  
Wenqi Sun ◽  
Yu-hang Chen ◽  
Yong Chen ◽  
Fei Li

Abstract Heterochromatin, a transcriptionally silenced chromatin domain, is important for genome stability and gene expression. Histone 3 lysine 9 methylation (H3K9me) and histone hypoacetylation are conserved epigenetic hallmarks of heterochromatin. In fission yeast, RNA interference (RNAi) plays a key role in H3K9 methylation and heterochromatin silencing. However, how RNAi machinery and histone deacetylases (HDACs) are coordinated to ensure proper heterochromatin assembly is still unclear. Previously, we showed that Dpb4, a conserved DNA polymerase epsilon subunit, plays a key role in the recruitment of HDACs to heterochromatin during S phase. Here, we identified a novel RNA-binding protein Dri1 that interacts with Dpb4. GFP-tagged Dri1 forms distinct foci mostly in the nucleus, showing a high degree of colocalization with Swi6/Heterochromatin Protein 1. Deletion of dri1+ leads to defects in silencing, H3K9me, and heterochromatic siRNA generation. We also showed that Dri1 physically associates with heterochromatic transcripts, and is required for the recruitment of the RNA-induced transcriptional silencing (RITS) complex via interacting with the complex. Furthermore, loss of Dri1 decreases the association of the Sir2 HDAC with heterochromatin. We further demonstrated that the C-terminus of Dri1 that includes an intrinsically disordered (IDR) region and three zinc fingers is crucial for its role in silencing. Together, our evidences suggest that Dri1 facilitates heterochromatin assembly via the RNAi pathway and HDAC.


Sign in / Sign up

Export Citation Format

Share Document