scholarly journals Blocking of progestin action disrupts spermatogenesis in Nile tilapia (Oreochromis niloticus)

2014 ◽  
Vol 53 (1) ◽  
pp. 57-70 ◽  
Author(s):  
Gang Liu ◽  
Feng Luo ◽  
Qiang Song ◽  
Limin Wu ◽  
Yongxiu Qiu ◽  
...  

In vitrostudies have indicated that the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP, DHP), probably through nuclear progestin receptor (Pgr), might be involved in the proliferation of spermatogonial cells and the initiation of meiosis in several fish species. However, furtherin vivoevidence is required to elucidate the role of DHP in spermatogenesis during sexual differentiation in teleosts. In this study, we clonedpgrand analyzed its expression in Nile tilapia (Oreochromis niloticus) and treated XY fish with RU486 (a synthetic Pgr antagonist) from 5 days after hatching (dah) to determine the role of DHP in spermatogenesis. Sequence and phylogenetic analyses revealed that the Pgr identified in tilapia is a genuine Pgr. Pgr was found to be expressed in the Sertoli cells surrounding spermatogonia and spermatids in the testis of tilapia. Real-time PCR analysis revealed that the expression ofpgrin the testis was significantly upregulated from 10 dah, further increased at 50 dah, and persisted until adulthood in fish. In the testis of RU486-treated fish, the transcript levels of germ cell markers and a meiotic marker were substantially reduced. However, the expression of markers in Sertoli cells remained unchanged. Moreover, the production of 11-ketotestosterone and the expression of genes encoding various steroidogenic enzymes were also not altered. In contrast, the expression ofcyp17a2, encoding one of the critical steroidogenic enzymes involved in DHP biosynthesis, declined significantly, possibly indicating the inhibition of DHP production by RU486. RU486 treatment given for 2 months did not affect spermatogenesis; however, treatment given for more than 3 months resulted in a decrease in spermatogonial cell numbers and depletion of later-phase spermatogenic cells. Simultaneous excessive DHP supplementation restored spermatogenesis in RU486-treated XY fish. Taken together, our data further indicated that DHP, possibly through Pgr, might be essential for spermatogonial cell proliferation and spermatogenesis in fish.

2018 ◽  
Vol 315 (5) ◽  
pp. E924-E948 ◽  
Author(s):  
Qing Wen ◽  
Elizabeth I. Tang ◽  
Wing-yee Lui ◽  
Will M. Lee ◽  
Chris K. C. Wong ◽  
...  

In the mammalian testis, spermatogenesis is dependent on the microtubule (MT)-specific motor proteins, such as dynein 1, that serve as the engine to support germ cell and organelle transport across the seminiferous epithelium at different stages of the epithelial cycle. Yet the underlying molecular mechanism(s) that support this series of cellular events remain unknown. Herein, we used RNAi to knockdown cytoplasmic dynein 1 heavy chain (Dync1h1) and an inhibitor ciliobrevin D to inactivate dynein in Sertoli cells in vitro and the testis in vivo, thereby probing the role of dynein 1 in spermatogenesis. Both treatments were shown to extensively induce disruption of MT organization across Sertoli cells in vitro and the testis in vivo. These changes also perturbed the transport of spermatids and other organelles (such as phagosomes) across the epithelium. These changes thus led to disruption of spermatogenesis. Interestingly, the knockdown of dynein 1 or its inactivation by ciliobrevin D also perturbed gross disruption of F-actin across the Sertoli cells in vitro and the seminiferous epithelium in vivo, illustrating there are cross talks between the two cytoskeletons in the testis. In summary, these findings confirm the role of cytoplasmic dynein 1 to support the transport of spermatids and organelles across the seminiferous epithelium during the epithelial cycle of spermatogenesis.


2016 ◽  
Vol 113 (7) ◽  
pp. 1829-1834 ◽  
Author(s):  
Liang-Yu Chen ◽  
William D. Willis ◽  
Edward M. Eddy

Spermatogonial stem cells (SSCs) are a subpopulation of undifferentiated spermatogonia located in a niche at the base of the seminiferous epithelium delimited by Sertoli cells and peritubular myoid (PM) cells. SSCs self-renew or differentiate into spermatogonia that proliferate to give rise to spermatocytes and maintain spermatogenesis. Glial cell line-derived neurotrophic factor (GDNF) is essential for this process. Sertoli cells produce GDNF and other growth factors and are commonly thought to be responsible for regulating SSC development, but limited attention has been paid to the role of PM cells in this process. A conditional knockout (cKO) of the androgen receptor gene in PM cells resulted in male infertility. We found that testosterone (T) induces GDNF expression in mouse PM cells in vitro and neonatal spermatogonia (including SSCs) co-cultured with T-treated PM cells were able to colonize testes of germ cell-depleted mice after transplantation. This strongly suggested that T-regulated production of GDNF by PM cells is required for spermatogonial development, but PM cells might produce other factors in vitro that are responsible. In this study, we tested the hypothesis that production of GDNF by PM cells is essential for spermatogonial development by generating mice with a cKO of the Gdnf gene in PM cells. The cKO males sired up to two litters but became infertile due to collapse of spermatogenesis and loss of undifferentiated spermatogonia. These studies show for the first time, to our knowledge, that the production of GDNF by PM cells is essential for undifferentiated spermatogonial cell development in vivo.


1987 ◽  
Vol 113 (1) ◽  
pp. 103-110 ◽  
Author(s):  
A. M. Ultee-van Gessel ◽  
F. H. de Jong

ABSTRACT The influence of age on testicular inhibin in untreated, neonatally hemicastrated and prenatally irradiated rats was studied using in-vivo and in-vitro experiments. In testicular cytosols prepared from 1-, 7-, 14-, 21-, 42- and 63-day-old rats concentrations of testicular inhibin could be measured with an in-vitro bioassay method using dispersed pituitary cells. Preparations of testicular cytosols caused a dose-dependent suppression of pituitary FSH secretion, whereas no effects were found on LH secretion. Testicular content of inhibin increased gradually with age, while after 14 days of age a relatively large increase of peripheral FSH concentrations occurred in all experimental groups. Neonatal hemicastration or prenatal irradiation resulted in decreased inhibin content of the testis and increased plasma FSH levels. The production of inhibin activity by Sertoli cells obtained from 7-, 14-, 21-, 42- and 63-day-old normal rats was measured during a 24-h incubation period on the third day of culture. The inhibin production per 106 plated Sertoli cells decreased rapidly after 14 days of age and the lowest production of inhibin was found in Sertoli cells from rats of 63 days of age. After preincubation with ovine FSH significantly larger amounts of inhibin activity were detected in spent media from 21-day-old rat testes. In contrast, suppression of inhibin production was found after preculture in the presence of testosterone at most of the ages studied. These data from in-vivo and in-vitro experiments indicate that a reciprocal relationship exists between pituitary FSH secretion and inhibin production before the age of 21 days. This relationship supports the concept that inhibin is a physiologically important modulator of FSH secretion before puberty, while the role of the large amount of testicular inhibin present at the older ages remains to be determined. J. Endocr. (1987) 113, 103–110


2021 ◽  
Author(s):  
Hongge Zhu ◽  
Xiuli Wang ◽  
Xin Zhou ◽  
Suqiong Lu ◽  
Guomin Gu ◽  
...  

Abstract Background: Gefitinib resistance has become a major obstacle for cancer therapy of non-small cell lung cancer (NSCLC). Exosome-mediated transfer of long noncoding RNAs (lncRNAs) is associated with the drug-resistance in various tumors. However, the role of NSCLC-specific exosomal lncRNAs remains largely unknown. The aim of this study is to explore the role of exosomal Hox transcript antisense intergenic RNA (HOTAIR) on gefitinib resistance in NSCLC. Methods: We investigated the expression of lncRNAs in 5 paired gefitinib-sensitive and gefitinib-resistant tissues of NSCLC by microarray analysis. The qRT-PCR analysis was to investigate the expression pattern of HOTAIR in gefitinib-resistant NSCLC patient tissues and cell lines. Then, we investigated the effects of HOTAIR on gefitinib resistance in vitro and in vivo. Results: In this study, we found HOTAIR was evidently up-regulated in both tissues and serum exosome of gefitinib-resistant NSCLC patients. Moreover, by knocking down HOTAIR, we found that HOTAIR promoted the proliferation of NSCLC cells in vitro, as well as inhibited cell apoptosis and cell sensitivity to gefitinib. Extracellular HOTAIR could be incorporated into exosomes and transmitted to sensitive cells, thus disseminated gefitinib resistance. The expression level of HOTAIR from circulating exosomes is significantly higher in NSCLC patients with gefitinib resistance than those without gefitinib resistance. Mechanistically, bioinformatic analysis coupled with dual luciferase assay revealed that HOTAIR served as miR-216a sponge, and MAP1S was identified as a functional target of miR-216a. Conclusions: In conclusion, these data suggest that exosomal HOTAIR serves as an oncogenic role in gefitinib resistance of NSCLC cells CRC through activating miR-216a/MAP1S signaling pathway, providing a novel avenue for the treatment of NSCLC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shimaa E. Ali ◽  
Amr A. A. Gamil ◽  
Ida Skaar ◽  
Øystein Evensen ◽  
Harrison Charo-Karisa

AbstractSaprolegniosis is a worldwide fungal-like infection affecting freshwater fishes and their eggs. Reports show high mortalities and subsequent economic losses annually from Saprolegnia infections. Most therapeutants against Saprolegnia spp. infections are inefficient and some have negative impact on the environment. In this study, we have investigated the ability of boric acid (BA) to prevent Saprolegnia infection in Nile tilapia (Oreochromis niloticus). BA inhibited radial growth of Saprolegnia hyphae in vitro. Complete in vitro growth inhibition was found at a concentration of ≥0.6 g/L. Inhibitory effects were also observed in vivo when Nile tilapia were experimentally challenged with Saprolegnia spores and followed over 10 days post challenge and under continuous exposure to different BA concentrations. No signs of saprolegniosis were observed in fish treated with BA at concentrations of 0.4 g/L and above. Comet assay revealed that BA has low toxicity in tilapia continuously exposed to concentrations of 0.2–0.6 g/L for 96 h. Additionally, no significant histomorphological changes were observed in BA-treated fish compared to non-treated controls. Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) enzyme levels indicated reduction in systemic tissue damage associated with Saprolegnia infection. This study demonstrates the potential of BA as a prophylactic measure against Saprolegnia infection in tilapia, and we recommend additional studies on environmental impact.


Endocrinology ◽  
2013 ◽  
Vol 154 (8) ◽  
pp. 2900-2911 ◽  
Author(s):  
Xiangbo Xu ◽  
Xihua Chen ◽  
Yunfeng Li ◽  
Huizi Cao ◽  
Cuige Shi ◽  
...  

Abstract The role of prostaglandins (PGs) in menstruation has long been proposed. Although evidence from studies on human and nonhuman primates supports the involvement of PGs in menstruation, whether PGs play an obligatory role in the process remains unclear. Although cyclooxygenase (COX) inhibitors have been used in the treatment of irregular uterine bleeding, the mechanism involved has not been elucidated. In this study, we used a recently established mouse menstrual-like model for investigating the role of COX in endometrial breakdown and its regulation. Administration of the nonspecific COX inhibitor indomethacin and the COX-2 selective inhibitor DuP-697 led to inhibition of the menstrual-like process. Furthermore, immunostaining analysis showed that the nuclear factor (NF)κB proteins P50, P65, and COX-2 colocalized in the outer decidual stroma at 12 to 16 hours after progesterone withdrawal. Chromatin immunoprecipitation analysis showed that NFκB binding to the Cox-2 promoter increased at 12 hours after progesterone withdrawal in vivo, and real-time PCR analysis showed that the NFκB inhibitors pyrrolidine dithiocarbamate and MG-132 inhibited Cox-2 mRNA expression in vivo and in vitro, respectively. Furthermore, COX-2 and NFκB inhibitors similarly reduced endometrial breakdown, suggesting that NFκB/COX-2-derived PGs play a critical role in this process. In addition, the CD45+ leukocyte numbers were sharply reduced following indomethacin (COX-1 and COX-2 inhibitor), DuP-697 (COX-2 inhibitor), and pyrrolidine dithiocarbamate (NFκB inhibitor) treatment. Collectively, these data indicate that NFκB/COX-2-induced PGs regulate leukocyte influx, leading to endometrial breakdown.


RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44216-44224
Author(s):  
Abdul Salam Rubeena ◽  
Sreeja Lakshmi ◽  
Digi George ◽  
Siva Bala Subramaniyan ◽  
Anbazhagan Veerappan ◽  
...  

Synthesis of Md-Lec-pCuSNPs and its enhanced in vitro and in vivo antibacterial activity.


Reproduction ◽  
2016 ◽  
Vol 151 (5) ◽  
pp. 527-538 ◽  
Author(s):  
M Faure ◽  
E Guibert ◽  
S Alves ◽  
B Pain ◽  
C Ramé ◽  
...  

Abstract Metformin, an insulin sensitiser from the biguanide family of molecules, is used for the treatment of insulin resistance in type 2 diabetes individuals. It increases peripheral glucose uptake and may reduce food intake. Based on the tight link between metabolism and fertility, we investigated the role of metformin on testicular function using in vitro culture of Sertoli cells and seminiferous tubules, complemented by in vivo data obtained following metformin administration to prepubertal chickens. In vitro, metformin treatment reduced Sertoli cell proliferation without inducing apoptosis and morphological changes. The metabolism of Sertoli cells was affected because lactate secretion by Sertoli cells increased approximately twofold and intracellular free ATP was negatively impacted. Two important pathways regulating proliferation and metabolism in Sertoli cells were assayed. Metformin exposure was not associated with an increased phosphorylation of AKT or ERK. There was a 90% reduction in the proportion of proliferating germ cells after a 96-h exposure of seminiferous tubule cultures to metformin. In vivo, 6-week-old chickens treated with metformin for 3 weeks exhibited reduced testicular weight and a 50% decrease in testosterone levels. The expression of a marker of undifferentiated germ cells was unchanged in contrast to the decrease in expression of ‘protamine’, a marker of differentiated germ cells. In conclusion, these results suggest that metformin affects the testicular energy content and the proliferative ability of Sertoli and germ cells. Reproduction (2016) 151 527–538


2021 ◽  
Author(s):  
Zhe Cao ◽  
Jun Qiang ◽  
Jun Zhu ◽  
Hong Li ◽  
Yi Tao ◽  
...  

Abstract Steroidogenic factor 1 (sf1) is an important regulator of gonad development and function in mammals. However, study of sf1 in fish is limited to cloning and expression and in vitro experiments. Using antisense RNA we knockout transcription of the sf1 gene in Nile tilapia Oreochromis niloticus, and obtain experimental fish in vivo. We demonstrate that antisense RNA can silence sf1 transcription and protein expression, and report suppression of sf1 transcription to affect gonad development and external genitalia formation in Nile tilapia. We also report disfunction of retinal metabolism and fatty acid metabolism to be important causes of weight gain and gonad abnormality with sf1 suppression. The feasibility of using antisense RNA for gene editing in fish is verified, and a new way of studying gene function and performing biological breeding is presented.


Sign in / Sign up

Export Citation Format

Share Document