scholarly journals Hepatic insulin resistance and increased hepatic glucose production in mice lacking Fgf21

2015 ◽  
Vol 226 (3) ◽  
pp. 207-217 ◽  
Author(s):  
João Paulo G Camporez ◽  
Mohamed Asrih ◽  
Dongyan Zhang ◽  
Mario Kahn ◽  
Varman T Samuel ◽  
...  

Fibroblast growth factor 21 (FGF21) is an important regulator of hepatic glucose and lipid metabolism and represents a potential pharmacological agent for the treatment of type 2 diabetes and obesity. Mice fed a ketogenic diet (KD) develop hepatic insulin resistance in association with high levels of FGF21, suggesting a state of FGF21 resistance. To address the role of FGF21 in hepatic insulin resistance, we assessed insulin action in FGF21 whole-body knock-out (FGF21 KO) male mice and their littermate WT controls fed a KD. Here, we report that FGF21 KO mice have hepatic insulin resistance and increased hepatic glucose production associated with an increase in plasma glucagon levels. FGF21 KO mice are also hypometabolic and display increased fat mass compared with their WT littermates. Taken together, these findings support a major role of FGF21 in regulating energy expenditure and hepatic glucose and lipid metabolism, and its potential role as a candidate in the treatment of diseases associated with insulin resistance.

2006 ◽  
Vol 291 (3) ◽  
pp. E536-E543 ◽  
Author(s):  
Chaodong Wu ◽  
Salmaan A. Khan ◽  
Li-Jen Peng ◽  
Honggui Li ◽  
Steven G. Carmella ◽  
...  

Hepatic insulin resistance is one of the characteristics of type 2 diabetes and contributes to the development of hyperglycemia. How changes in hepatic glucose flux lead to insulin resistance is not clearly defined. We determined the effects of decreasing the levels of hepatic fructose 2,6-bisphosphate (F26P2), a key regulator of glucose metabolism, on hepatic glucose flux in the normal 129J mice. Upon adenoviral overexpression of a kinase activity-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme that determines F26P2 level, hepatic F26P2 levels were decreased twofold compared with those of control virus-treated mice in basal state. In addition, under hyperinsulinemic conditions, hepatic F26P2 levels were much lower than those of the control. The decrease in F26P2 leads to the elevation of basal and insulin-suppressed hepatic glucose production. Also, the efficiency of insulin to suppress hepatic glucose production was decreased (63.3 vs. 95.5% suppression of the control). At the molecular level, a decrease in insulin-stimulated Akt phosphorylation was consistent with hepatic insulin resistance. In the low hepatic F26P2 states, increases in both gluconeogenesis and glycogenolysis in the liver are responsible for elevations of hepatic glucose production and thereby contribute to the development of hyperglycemia. Additionally, the increased hepatic gluconeogenesis was associated with the elevated mRNA levels of peroxisome proliferator-activated receptor-γ coactivator-1α and phospho enolpyruvate carboxykinase. This study provides the first in vivo demonstration showing that decreasing hepatic F26P2 levels leads to increased gluconeogenesis in the liver. Taken together, the present study demonstrates that perturbation of glucose flux in the liver plays a predominant role in the development of a diabetic phenotype, as characterized by hepatic insulin resistance.


2005 ◽  
Vol 289 (4) ◽  
pp. E551-E561 ◽  
Author(s):  
Eugenia Carvalho ◽  
Ko Kotani ◽  
Odile D. Peroni ◽  
Barbara B. Kahn

Adipose tissue plays an important role in glucose homeostasis and affects insulin sensitivity in other tissues. In obesity and type 2 diabetes, glucose transporter 4 (GLUT4) is downregulated in adipose tissue, and glucose transport is also impaired in muscle. To determine whether overexpression of GLUT4 selectively in adipose tissue could prevent insulin resistance when glucose transport is impaired in muscle, we bred muscle GLUT4 knockout (MG4KO) mice to mice overexpressing GLUT4 in adipose tissue (AG4Tg). Overexpression of GLUT4 in fat not only normalized the fasting hyperglycemia and glucose intolerance in MG4KO mice, but it reduced these parameters to below normal levels. Glucose infusion rate during a euglycemic clamp study was reduced 46% in MG4KO compared with controls and was restored to control levels in AG4Tg-MG4KO. Similarly, insulin action to suppress hepatic glucose production was impaired in MG4KO mice and was restored to control levels in AG4Tg-MG4KO. 2-Deoxyglucose uptake during the clamp was increased approximately twofold in white adipose tissue but remained reduced in skeletal muscle of AG4Tg-MG4KO mice. AG4Tg and AG4Tg-MG4KO mice have a slight increase in fat mass, a twofold elevation in serum free fatty acids, an ∼50% increase in serum leptin, and a 50% decrease in serum adiponectin. In MG4KO mice, serum resistin is increased 34% and GLUT4 overexpression in fat reverses this. Overexpression of GLUT4 in fat also reverses the enhanced clearance of an oral lipid load in MG4KO mice. Thus overexpression of GLUT4 in fat reverses whole body insulin resistance in MG4KO mice without restoring glucose transport in muscle. This effect occurs even though AG4Tg-MG4KO mice have increased fat mass and low adiponectin and is associated with normalization of elevated resistin levels.


1991 ◽  
Vol 260 (6) ◽  
pp. E938-E945 ◽  
Author(s):  
M. Gilbert ◽  
M. C. Pere ◽  
A. Baudelin ◽  
F. C. Battaglia

This study addresses whether elevated free fatty acids (FFA) contribute to the hepatic insulin resistance of pregnancy. We applied a euglycemic hyperinsulinemic clamp with or without Intralipid plus heparin infusion in conscious virgin and pregnant rabbits after an 18-h fast coupled with chronic catheterization of the hepatic and portal veins and femoral artery. A primed constant infusion of [3-3H]glucose was used to determine glucose fluxes. Insulin was infused into a mesenteric vein for 140 min. In pregnant rabbits, basal net hepatic uptake of lactate was almost two times that of nonpregnant rabbits. During a euglycemic hyperinsulinemic clamp there was a decline of approximately 65% in hepatic lactate uptake in nonpregnant rabbits at 80 min, whereas a similar decrease was observed only at 140 min in pregnant rabbits. This effect was blocked by lipid infusion. In the basal state the hepatic uptake of FFA was greater in pregnant than in nonpregnant animals. During the hyperinsulinemic clamp the hepatic uptake dropped by approximately 70 and approximately 30% in nonpregnant and pregnant females, respectively. Lipid infusion did not prevent the hepatic FFA uptake and hepatic ketone body output from decreasing. Hepatic glucose production was totally suppressed in the control period in nonpregnant animals but not during lipid infusion (approximately 65%). Hepatic glucose production was not significantly different between pregnant and nonpregnant rabbits during lipid infusion. Glucose utilization was markedly reduced in nonpregnant animals during lipid infusion to levels comparable with that in pregnant animals.(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
Vol 42 (2) ◽  
pp. 161-169 ◽  
Author(s):  
Sachie Nakamichi ◽  
Yoko Senga ◽  
Hiroshi Inoue ◽  
Aki Emi ◽  
Yasushi Matsuki ◽  
...  

Gene related to anergy in lymphocytes (GRAIL) is an E3 ubiquitin ligase that regulates energy in T-lymphocytes. Whereas, the relevance of GRAIL to T lymphocyte function is well established, the role of this protein in other cell types remains unknown. Given that GRAIL is abundant in the liver, we investigated the potential function of GRAIL in nutrient metabolism by generating mice in which the expression of GRAIL is reduced specifically in the liver. Adenovirus-mediated transfer of a short hairpin RNA specific for GRAIL mRNA markedly reduced the amounts of GRAIL mRNA and protein in the liver. Blood glucose levels of the mice with hepatic GRAIL deficiency did not differ from those of control animals in the fasted or fed states. However, these mice manifested glucose intolerance in association with a normal increase in plasma insulin levels during glucose challenge. The mice also manifested an increase in the serum concentration of free fatty acids, whereas the serum levels of cholesterol and triglyceride were unchanged. The hepatic abundance of mRNAs for glucose-6-phosphatase, catalytic (a key enzyme in hepatic glucose production) and for sterol regulatory element-binding transcription factor 1 (an important transcriptional regulator of lipogenesis) was increased in the mice with hepatic GRAIL deficiency, possibly contributing to the metabolic abnormalities of these animals. Our results thus demonstrate that GRAIL in the liver is essential for maintenance of normal glucose and lipid metabolism in living animals.


2003 ◽  
Vol 284 (2) ◽  
pp. E281-E290 ◽  
Author(s):  
Tony K. T. Lam ◽  
Gérald Van de Werve ◽  
Adria Giacca

To investigate the sites of the free fatty acid (FFA) effects to increase basal hepatic glucose production and to impair hepatic insulin action, we performed 2-h and 7-h Intralipid + heparin (IH) and saline infusions in the basal fasting state and during hyperinsulinemic clamps in overnight-fasted rats. We measured endogenous glucose production (EGP), total glucose output (TGO, the flux through glucose-6-phosphatase), glucose cycling (GC, index of flux through glucokinase = TGO − EGP), hepatic glucose 6-phosphate (G-6- P) content, and hepatic glucose-6-phosphatase and glucokinase activities. Plasma FFA levels were elevated about threefold by IH. In the basal state, IH increased TGO, in vivo glucose-6-phosphatase activity (TGO/G-6- P), and EGP ( P < 0.001). During the clamp compared with the basal experiments, 2-h insulin infusion increased GC and in vivo glucokinase activity (GC/TGO; P < 0.05) and suppressed EGP ( P< 0.05) but failed to significantly affect TGO and in vivo glucose-6-phosphatase activity. IH decreased the ability of insulin to increase GC and in vivo glucokinase activity ( P < 0.01), and at 7 h, it also decreased the ability of insulin to suppress EGP ( P < 0.001). G-6- P content was comparable in all groups. In vivo glucose-6-phosphatase and glucokinase activities did not correspond to their in vitro activities as determined in liver tissue, suggesting that stable changes in enzyme activity were not responsible for the FFA effects. The data suggest that, in overnight-fasted rats, FFA increased basal EGP and induced hepatic insulin resistance at different sites. 1) FFA increased basal EGP through an increase in TGO and in vivo glucose-6-phosphatase activity, presumably due to a stimulatory allosteric effect of fatty acyl-CoA on glucose-6-phosphatase. 2) FFA induced hepatic insulin resistance (decreased the ability of insulin to suppress EGP) through an impairment of insulin's ability to increase GC and in vivo glucokinase activity, presumably due to an inhibitory allosteric effect of fatty acyl-CoA on glucokinase and/or an impairment in glucokinase translocation.


Open Biology ◽  
2021 ◽  
Vol 11 (9) ◽  
Author(s):  
Chang Guo ◽  
Chenxi Wang ◽  
Xia Deng ◽  
Jianqiang He ◽  
Ling Yang ◽  
...  

ANGPTL8 is an important cytokine, which is significantly increased in type 2 diabetes mellitus (T2DM), obesity and metabolic syndrome. Many studies have shown that ANGPTL8 can be used as a bio-marker of these metabolic disorders related diseases, and the baseline ANGPTL8 level has also been found to be positively correlated with retinopathy and all-cause mortality in patients with T2DM. This may be related to the inhibition of lipoprotein lipase activity and the reduction of circulating triglyceride (TG) clearance by ANGPTL8. Consistently, inhibition of ANGPTL8 seems to prevent or improve atherosclerosis. However, it is puzzling that ANGPTL8 seems to have a directing function for TG uptake in peripheral tissues; that is, ANGPTL8 specifically enhances the reserve and buffering function of white adipose tissue, which may alleviate the ectopic lipid accumulation to a certain extent. Furthermore, ANGPTL8 can improve insulin sensitivity and inhibit hepatic glucose production. These contradictory results lead to different opinions on the role of ANGPTL8 in metabolic disorders. In this paper, the correlation between ANGPTL8 and metabolic diseases, the regulation of ANGPTL8 and the physiological role of ANGPTL8 in the process of glucose and lipid metabolism were summarized, and the physiological/pathological significance of ANGPTL8 in the process of metabolic disorder was discussed.


2002 ◽  
Vol 282 (1) ◽  
pp. E38-E45 ◽  
Author(s):  
Chaodong Wu ◽  
David A. Okar ◽  
Christopher B. Newgard ◽  
Alex J. Lange

Hepatic glucose production is increased as a metabolic consequence of insulin resistance in type 2 diabetes. Because fructose 2,6-bisphosphate is an important regulator of hepatic glucose production, we used adenovirus-mediated enzyme overexpression to increase hepatic fructose 2,6-bisphosphate to determine if the hyperglycemia in KK mice, polygenic models of type 2 diabetes, could be ameliorated by reduction of hepatic glucose production. Seven days after treatment with virus encoding a mutant 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase designed to increase fructose 2,6-bisphosphate levels, plasma glucose, lipids, and insulin were significantly reduced in KK/H1J and KK.Cg-Ay/J mice. Moreover, high fructose 2,6-bisphosphate levels downregulated glucose-6-phosphatase and upregulated glucokinase gene expression, thereby reversing the insulin-resistant pattern of hepatic gene expression of these two key glucose-metabolic enzymes. The increased hepatic fructose 2,6-bisphosphate also reduced adiposity in both KK mice. These results clearly indicate that increasing hepatic fructose 2,6-bisphosphate overcomes the impairment of insulin in suppressing hepatic glucose production, and it provides a potential therapy for type 2 diabetes.


2009 ◽  
Vol 297 (6) ◽  
pp. R1785-R1794 ◽  
Author(s):  
Elisabeth L. Raab ◽  
Patricia M. Vuguin ◽  
Doris A. Stoffers ◽  
Rebecca A. Simmons

Intrauterine growth retardation (IUGR) has been linked to the development of Type 2 diabetes in adulthood. We have developed an IUGR model in the rat whereby the animals develop diabetes later in life. Previous studies demonstrate that administration of the long-acting glucagon-like-peptide-1 agonist, Exendin-4, during the neonatal period prevents the development of diabetes in IUGR rats. IUGR animals exhibit hepatic insulin resistance early in life (prior to the onset of hyperglycemia), characterized by blunted suppression of hepatic glucose production (HGP) in response to insulin. Basal HGP is also significantly higher in IUGR rats. We hypothesized that neonatal administration of Exendin-4 would prevent the development of hepatic insulin resistance. IUGR and control rats were given Exendin-4 on days 1–6 of life. Hyperinsulinemic-euglycemic clamp studies showed that Ex-4 significantly reduced basal HGP by 20% and normalized insulin suppression of HGP in IUGR rats. While Ex-4 decreased body weight and fat content in both Control and IUGR animals, these differences were only statistically significant in Controls. Exendin-4 prevented development of oxidative stress in liver and reversed insulin-signaling defects in vivo, thereby preventing the development of hepatic insulin resistance. Defects in glucose disposal and suppression of hepatic glucose production in response to insulin were reversed. Similar results were obtained in isolated Ex-4-treated neonatal hepatocytes. These results indicate that exposure to Exendin-4 in the newborn period reverses the adverse consequences of fetal programming and prevents the development of hepatic insulin resistance.


1993 ◽  
Vol 264 (1) ◽  
pp. E18-E23 ◽  
Author(s):  
M. B. Davidson ◽  
D. Garvey

Whether hyperinsulinemia causes insulin resistance or vice versa is controversial. The development of hyperinsulinemia and insulin resistance was tracked in the cafeteria-fed rat to determine which occurred first. After 3 days of cafeteria feeding the rats were obese, manifested a small but significant decrease in fasting glucose levels, and showed no change in fasting insulin levels, basal hepatic glucose production (HGP), insulin binding to hepatic membranes, and glucose utilization during a euglycemic hyperinsulinemic clamp, but the rats did demonstrate an increased glucose disappearance rate associated with an enhanced insulin response to intra-arterial glucose and hepatic insulin resistance during the clamp. After 7 days of cafeteria feeding, the results were similar except that fasting hyperglycemia and hyperinsulinemia, an enhanced basal HGP, and decreased insulin binding developed. After 6 wk of cafeteria feeding, both hepatic and peripheral insulin resistances were present. After 7 days of cafeteria feeding in rats given streptozotocin or etomoxir, an inhibitor of free fatty acid (FFA) oxidation, hepatic insulin resistance persisted despite elimination of hyperinsulinemia and reduction of FFA oxidation. These data do not support a causal role for either hyperinsulinemia or enhanced lipolysis of hypertrophied fat stores and subsequent FFA oxidation in the liver in the development of hepatic insulin resistance in this animal model of obesity.


Sign in / Sign up

Export Citation Format

Share Document