scholarly journals Thyroid hormone-dependent regulation of metabolism and heart regeneration

2021 ◽  
Author(s):  
Ines Ross ◽  
Denzel B Omengan ◽  
Guo N Huang ◽  
Alexander Y Payumo

While adult zebrafish and newborn mice possess a robust capacity to regenerate their hearts, this ability is generally lost in adult mammals. The logic behind the diversity of cardiac regenerative capacity across the animal kingdom is not well understood. We have recently reported that animal metabolism is inversely correlated to the abundance of mononucleated diploid cardiomyocytes in the heart, which retain proliferative and regenerative potential. Thyroid hormones are classical regulators of animal metabolism, mitochondrial function, and thermogenesis and a growing body of scientific evidence demonstrates that these hormonal regulators also have direct effects on cardiomyocyte proliferation and maturation. We propose that thyroid hormones dually control animal metabolism and cardiac regenerative potential through distinct mechanisms, which may represent an evolutionary tradeoff for the acquisition of endothermy and loss of heart regenerative capacity. In this review, we describe the effects of thyroid hormones on animal metabolism and cardiomyocyte regeneration, and highlight recent reports linking the loss of mammalian cardiac regenerative capacity to metabolic shifts occurring after birth.

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Shah R Ali ◽  
Waleed El-Helaly ◽  
Ivan Menendez-Montes ◽  
Ngoc Uyen Nhi Nguyen ◽  
Suwannee Thet ◽  
...  

Background: The adult mammalian heart is unable to regenerate after an injury. However, newborn mice are able to fully regenerate the heart after myocardial infarction (MI). The neonatal MI model therefore is a potential blueprint for regenerating the adult heart that could offer novel therapies for patients suffering from heart disease. To investigate the mechanism by which neonatal heart regeneration occurs, we screened for secreted proteins that are upregulated after neonatal MI but not after adult MI. We hypothesized that such a protein could be a cardiomyocyte mitogen that underlies the cardiomyocyte proliferation that occurs after neonatal MI. Methods: We performed microarrays on neonatal and adult MI (and sham) heart tissue samples: we identified IGFBP3 (Insulin Growth Factor Binding Protein 3), which canonically transports IGF ligands in circulation, as a secreted protein that is uniquely upregulated after neonatal MI. We used in situ hybridization, reporter mice, and immunostaining to validate the findings from the microarray. Single cell RNA-seq data revealed that IGFBP3 is expressed in vascular cells. Results: We first tested whether IGFBP3 is necessary during neonatal heart regeneration: we performed neonatal (P1) MI in global Igfbp3 knockout mice and wild-type mice, and found that knockout mice have more fibrosis and worse ejection fraction (EF) one month after P1 MI. To determine if IGFBP3 is sufficient to promote cardiomyocyte proliferation, we injected recombinant IGFBP3 protein into the heart of one week-old mice (P7) and saw more cycling myocytes. We generated novel transgenic vascular-Igfbp3-overexpression mice, which exhibit less fibrosis as well as improved EF after P7 MI compared to controls. Conclusions: IGFBP3 is a secreted protein that is necessary for complete regeneration after a neonatal MI. Its ectopic expression can cause cardiomyocyte proliferation and can improve systolic function, and it prolongs the window of neonatal heart regeneration. Therefore, IGFBP3 may represent a cardiomyocyte mitogen with potential therapeutic value for adult heart disease.


2019 ◽  
Vol 89 (1-2) ◽  
pp. 80-88 ◽  
Author(s):  
Juliana Soares Severo ◽  
Jennifer Beatriz Silva Morais ◽  
Taynáh Emannuelle Coelho de Freitas ◽  
Ana Letícia Pereira Andrade ◽  
Mayara Monte Feitosa ◽  
...  

Abstract. Thyroid hormones play an important role in body homeostasis by facilitating metabolism of lipids and glucose, regulating metabolic adaptations, responding to changes in energy intake, and controlling thermogenesis. Proper metabolism and action of these hormones requires the participation of various nutrients. Among them is zinc, whose interaction with thyroid hormones is complex. It is known to regulate both the synthesis and mechanism of action of these hormones. In the present review, we aim to shed light on the regulatory effects of zinc on thyroid hormones. Scientific evidence shows that zinc plays a key role in the metabolism of thyroid hormones, specifically by regulating deiodinases enzymes activity, thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH) synthesis, as well as by modulating the structures of essential transcription factors involved in the synthesis of thyroid hormones. Serum concentrations of zinc also appear to influence the levels of serum T3, T4 and TSH. In addition, studies have shown that Zinc transporters (ZnTs) are present in the hypothalamus, pituitary and thyroid, but their functions remain unknown. Therefore, it is important to further investigate the roles of zinc in regulation of thyroid hormones metabolism, and their importance in the treatment of several diseases associated with thyroid gland dysfunction.


2020 ◽  
Vol 140 ◽  
pp. 30
Author(s):  
Nicola Pianca ◽  
Francesca Pontis ◽  
Alla Aharonov ◽  
Chiara Bongiovanni ◽  
Martina Mazzeschi ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 548 ◽  
Author(s):  
Helene Juul Belling ◽  
Wolfgang Hofmeister ◽  
Ditte Caroline Andersen

Myocardial infarction (MI) is a worldwide condition that affects millions of people. This is mainly caused by the adult human heart lacking the ability to regenerate upon injury, whereas zebrafish have the capacity through cardiomyocyte proliferation to fully regenerate the heart following injury such as apex resection (AR). But a systematic overview of the methods used to evidence heart regrowth and regeneration in the zebrafish is lacking. Herein, we conducted a systematical search in Embase and Pubmed for studies on heart regeneration in the zebrafish following injury and identified 47 AR studies meeting the inclusion criteria. Overall, three different methods were used to assess heart regeneration in zebrafish AR hearts. 45 out of 47 studies performed qualitative (37) and quantitative (8) histology, whereas immunohistochemistry for various cell cycle markers combined with cardiomyocyte specific proteins was used in 34 out of 47 studies to determine cardiomyocyte proliferation qualitatively (6 studies) or quantitatively (28 studies). For both methods, analysis was based on selected heart sections and not the whole heart, which may bias interpretations. Likewise, interstudy comparison of reported cardiomyocyte proliferation indexes seems complicated by distinct study designs and reporting manners. Finally, six studies performed functional analysis to determine heart function, a hallmark of human heart injury after MI. In conclusion, our data implies that future studies should consider more quantitative methods eventually taking the 3D of the zebrafish heart into consideration when evidencing myocardial regrowth after AR. Furthermore, standardized guidelines for reporting cardiomyocyte proliferation and sham surgery details may be considered to enable inter study comparisons and robustly determine the effect of given genes on the process of heart regeneration.


1991 ◽  
Vol 130 (2) ◽  
pp. 239-244 ◽  
Author(s):  
N. K. Green ◽  
M. D. Gammage ◽  
J. A. Franklyn ◽  
M. C. Sheppard

ABSTRACT Effects of thyroid status on expression of a variety of myocardial genes, such as those encoding contractile proteins, have been reported, as well as interactions between thyroid hormones and developmental and haemodynamic regulation of contractile protein synthesis. In addition, it is clear that developmental and haemodynamic factors regulate expression of specific proto-oncogenes, including c-myc, c-fos and H-ras, in the myocardium but the effect of thyroid status on such proto-oncogene products, which are proposed to play a critical signal-transducing role in the heart, has been previously unexplored. In order to determine whether changes in thyroid status are associated with changes in expression of these putative intracellular signals, we examined the effect of hypothyroidism and tri-iodothyronine (T3) treatment on myocardial levels of c-myc, c-fos and H-ras mRNAs in the rat. The induction of hypothyroidism was associated with a marked increase in myocardial c-myc, c-fos and H-ras mRNAs, changes reversed by 72 h of T3 replacement. Administration of T3 to euthyroid rats had no significant effect on myocardial c-myc or c-fos mRNAs, but inhibition of H-ras mRNA by T3 was evident. These observations demonstrating influences of thyroid status on expression of specific proto-oncogenes suggest that thyroid hormones, as well as exerting direct effects on expression of functionally important myocardial genes, also interact with the cellular transduction pathways mediated by the products of the c-myc, c-fos and H-ras genes. Journal of Endocrinology (1991) 130, 239–244


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Yuka Morikawa ◽  
John Leach ◽  
Todd Heallen ◽  
Ge Tao ◽  
James F Martin

Regeneration in mammalian hearts is limited due to the extremely low renewal rate of cardiomyocytes and their inability to reenter the cell cycle. In rodent hearts, endogenous regenerative capacity exists during development but is rapidly repressed after birth, at which time growth is by hypertrophy. During the developmental and neonatal periods, heart regeneration occurs through proliferation of pre-existing cardiomyocytes. Our approach of activating heart regeneration is to uncover the mechanisms responsible for repression of cardiomyocyte proliferation. The Hippo pathway controls heart size by repressing cardiomyocyte proliferation during development. By deleting Salv , a modulator of the Hippo pathway, we found that myocardial damage in postnatal and adult hearts was repaired both anatomically and functionally. This heart repair occurred primary through proliferation of preexisting cardiomyocytes. During repair, cardiomyocytes reenter the cell cycle; de novo DNA synthesis, karyokinesis, and cytokinesis all take place. The dystrophin glycoprotein complex (DGC) is essential for muscle maintenance by anchoring the cytoskeleton and extracellular matrix. Disruption of the DGC results in muscular dystrophies, including Duchenne muscular dystrophy, resulting in both skeletal and cardiac myopathies. Recently the DGC was shown to regulate cardiomyocyte proliferation and we found that the DGC and the Hippo pathway components directly interact. To address if the DGC and the Hippo pathway coordinately regulate cardiomyocyte proliferation, we conditionally deleted Salv in the mouse model of muscular dystrophy, the mdx line. We found that simultaneous disruption of both the DGC and Hippo pathway leads an increased de novo DNA synthesis and cytokinesis in cardiomyocytes after heart damage. Our findings provide new insights into the mechanisms leading to heart repair through proliferation of endogenous cardiomyocytes.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Xiaohui Wang ◽  
Yuanping Hu ◽  
Tuanzhu Ha ◽  
John Kalbfleisch ◽  
Race Kao ◽  
...  

The neonatal heart possesses the capability of regenerating and repairing damaged myocardium which is lost when cardiac metabolism switches from predominate glycolysis to oxidative phosphorylation seven days after birth. We have observed that Toll-like receptor 3 (TLR3) deficient neonatal hearts exhibit impaired cardiac function and larger infarct size after myocardial infarction (MI). We also found that stimulation of neonatal cardiomyocytes with the TLR3 ligand, poly (I:C) significantly enhances glycolytic capacity. Our observation suggests that TLR3 is required for neonatal heart repair and regeneration of damaged myocardium. This study investigated the mechanisms by which TLR3 mediates neonatal heart regeneration and repair. Neonatal cardiomyocytes were isolated from one day old WT mice and treated with poly (I:C) (1μg/ml) for 12-36 hours. We observed that poly (I:C) treatment: i) significantly enhances glycolytic metabolism; ii) increases YAP/TAZ activation: iii) increases miR-152 expression; iv) suppresses expression of DNMT1 and p27kip1, and v) promotes cardiomyocyte proliferation. However, inhibition of glycolysis with 2-Deoxyglucose (2-DG) prevented poly (I:C)-induced YAP/TAZ activation and miR-152 expression in neonatal cardiomyocytes. Similarly, inhibition of YAP/TAZ activation with Verteprofin (VP) abolished poly (I:C) induced miR-152 expression and neonatal cardiomyocyte proliferation. To investigate the role of miR-152 in neonatal cardiomyocyte proliferation, we transfected neonatal cardiomyocytes with miR-152 mimics and observed that increased miR-152 levels significantly promotes neonatal cardiomyocyte proliferation. We also observed that transfection of neonatal cardiomyocytes with miR-152 mimics markedly suppresses the expression of DNMT1 and p27kip1. Inhibition of DNMT1 with 5Azcytidine significantly promotes neonatal cardiomyocyte proliferation. Finally, we observed that treatment of neonatal mice (n=6) with 2-DG abolished cardiac functional recovery 3 weeks after MI. We conclude that TLR3 is required for neonatal heart regeneration and repair after MI. The mechanisms involve glycolytic dependent activation of YAP/TAZ mediated by miR-152 which represses DNMT1/p27kip1 expression.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Shalini Muralidhar ◽  
Feng Xiao ◽  
Suwannee Thet ◽  
Hesham Sadek

Lower vertebrates, such as newt and zebrafish, retain a robust cardiac regenerative capacity following injury. Although adult mammals lack this cardiac regenerative potential, there is ample interest in understanding how heart regeneration occurs, and to reawaken this process in adult humans. Recently, we showed that mice are capable of regenerating their hearts shortly after birth following injury. This regenerative response is associated with robust proliferation of cardiomyocytes without significant hypertrophy or fibrosis. However, this regenerative capacity is lost by 7 days postnatally, coinciding with cell cycle arrest. In an effort to determine the mechanism of cardiomyocytes cell cycle arrest after the first week of life, we performed a gene array after cardiac injury at multiple post-natal time points. This enabled us to identify a number of transcription factors that are differentially expressed during this postnatal window. We recently reported that one of these transcription factors Meis1 regulates postnatal cell cycle arrest of cardiomyocytes. Furthermore, Myeloid leukemia factor 1 (Mlf1), a bhlh transcription factor that has not been previously studied in the heart has similar dysregulated pattern following injury. Our preliminary data with in-vitro knockdown of Mlf1 in cardiomyocyte resulted in 2-fold increase in cardiomyocyte proliferation. Furthermore, immunohistochemistry results indicated that the endogenous expression and nuclear localization of Mlf1 in the post-natal cardiomyocytes coincides with cell cycle arrest. To explore this pattern, we generated a cardiomyocyte-specific Mlf1 knockout mouse, and showed that loss of Mlf1 results in robust cardiomyocyte proliferation in postnatal hearts (P14). Additionally, we confirmed previous reports that Mlf1 regulates p53 and induces cell cycle arrest by induction of CDK inhibitors like p21 and p57 in these Mlf1 KO mice. This suggests a role of Mlf1 in promoting reactivation of injured myocardium through induction of cardiomyocyte proliferation. These findings will further provide evidences of molecular mechanisms involved in the dormant regenerative capacity in adult mammals that can be a potential target of therapeutic approaches.


2019 ◽  
Vol 6 (1) ◽  
pp. 5 ◽  
Author(s):  
Adriana Rodriguez ◽  
Viravuth Yin

Stimulating cardiomyocyte regeneration after an acute injury remains the central goal in cardiovascular regenerative biology. While adult mammals respond to cardiac damage with deposition of rigid scar tissue, adult zebrafish and salamander unleash a regenerative program that culminates in new cardiomyocyte formation, resolution of scar tissue, and recovery of heart function. Recent studies have shown that immune cells are key to regulating pro-inflammatory and pro-regenerative signals that shift the injury microenvironment toward regeneration. Defining the genetic regulators that control the dynamic interplay between immune cells and injured cardiac tissue is crucial to decoding the endogenous mechanism of heart regeneration. In this review, we discuss our current understanding of the extent that macrophage and regulatory T cells influence cardiomyocyte proliferation and how microRNAs (miRNAs) regulate their activity in the injured heart.


Sign in / Sign up

Export Citation Format

Share Document