scholarly journals Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause

Reproduction ◽  
2014 ◽  
Vol 147 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Jane C Fenelon ◽  
Geoff Shaw ◽  
Chris O'Neill ◽  
Stephen Frankenberg ◽  
Marilyn B Renfree

The control of reactivation from embryonic diapause in the tammar wallaby (Macropus eugenii) involves sequential activation of the corpus luteum, secretion of progesterone that stimulates endometrial secretion and subsequent changes in the uterine environment that activate the embryo. However, the precise signals between the endometrium and the blastocyst are currently unknown. In eutherians, both the phospholipid Paf and its receptor, platelet-activating factor receptor (PTAFR), are present in the embryo and the endometrium. In the tammar, endometrial Paf releasein vitroincreases around the time of the early progesterone pulse that occurs around the time of reactivation, but whether Paf can reactivate the blastocyst is unknown. We cloned and characterised the expression of PTAFR in the tammar embryo and endometrium at entry into embryonic diapause, during its maintenance and after reactivation. Tammar PTAFR sequence and protein were highly conserved with mammalian orthologues. In the endometrium, PTAFR was expressed at a constant level in the glandular epithelium across all stages and in the luminal epithelium during both diapause and reactivation. Thus, the presence of the receptor appears not to be a limiting factor for Paf actions in the endometrium. However, the low levels of PTAFR in the embryo during diapause, together with its up-regulation and subsequent internalisation at reactivation, supports earlier results suggesting that endometrial Paf could be involved in reactivation of the tammar blastocyst from embryonic diapause.

2001 ◽  
Vol 354 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Delphine HOURTON ◽  
Philippe DELERIVE ◽  
Jana STANKOVA ◽  
Bart STAELS ◽  
M. John CHAPMAN ◽  
...  

Regulation of the expression of platelet-activating factor (PAF) receptor by atherogenic lipoproteins might contribute to atherogenesis. We show that progressive oxidation of low-density lipoprotein (LDL) gradually inhibits PAF receptor expression on the macrophage cell surface. We tested the effect of oxidized LDL (oxLDL) on PAF receptor expression in human monocytes that do not contain peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear receptor activated by oxLDL. OxLDL decreased by 50% (P ⩽0.001) and by 29% (P⩽0.05) the binding of PAF and the expression of PAF receptor mRNA respectively. Next we demonstrated that progressive oxidation of LDLs significantly activated PPARα-dependent transcription in transfected mouse aortic endothelial cells. Finally we demonstrated, in mature macrophages, that fenofibrate (20µM), a specific PPARα agonist, but not the specific PPARγ agonist BRL49653 (20nM), significantly decreased both PAF binding and PAF receptor mRNA expression, by 65% and 40% (P⩽0.001) respectively. Additionally, another PPARα agonist, Wy14,643, decreased PAF receptor promoter activity by 70% (P⩽0.05) in transfected THP-1 cells, suggesting the involvement of the proximal promoter region (-980 to -500) containing a series of four nuclear factor (NF)-κB motifs. Thus PPARα might be involved in the down-regulation of PAF receptor gene expression by oxLDLs in human monocytes/macrophages. The oxidation of one or more lipid components of LDLs might result in the formation of natural activators of PPARα. It is hypothesized that such activators might modulate inflammation and apoptosis upon atherogenesis by decreasing the expression of PAF receptor.


Neoplasma ◽  
2014 ◽  
Vol 61 (03) ◽  
pp. 309-317 ◽  
Author(s):  
C. GIAGINIS,E. KOUROU ◽  
A. GIAGINI ◽  
N. GOUTAS ◽  
E. PATSOURIS ◽  
G. KOURAKLIS ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Janne Oestvang ◽  
Marit W. Anthonsen ◽  
Berit Johansen

Oxidized low-density lipoproteins (LDLs) play an important role during the development of atherosclerosis characterized by intimal inflammation and macrophage accumulation. A key component of LDL is lysophosphatidylcholine (lysoPC). LysoPC is a strong proinflammatory mediator, and its mechanism is uncertain, but it has been suggested to be mediated via the platelet activating factor (PAF) receptor. Here, we report that PAF triggers a pertussis toxin- (PTX-) sensitive intracellular signaling pathway leading to sequential activation of sPLA2, PLD, cPLA2, and AA release in human-derived monocytes. In contrast, lysoPC initiates two signaling pathways, one sequentially activating PLD and cPLA2, and a second parallel PTX-sensitive pathway activating cPLA2with concomitant activation of sPLA2, all leading to AA release. In conclusion, lysoPC and PAF stimulate AA release by divergent pathways suggesting involvement of independent receptors. Elucidation of monocyte lysoPC-specific signaling mechanisms will aid in the development of novel strategies for atherosclerosis prevention, diagnosis, and therapy.


1996 ◽  
Vol 8 (4) ◽  
pp. 811 ◽  
Author(s):  
G Shaw

In tammar wallabies, Macropus eugenii, the uterine environment plays a key role in regulating development, because during the first two-thirds of gestation an acellular mucoid coat and shell prevent direct cell-cell contact between the endometrium and embryonic cells. This control is seen very clearly in the facultative lactational diapause of tammars. Removal of the suckled pouch young during the breeding season terminates diapause, leading to a distinct increase in metabolic activity of the embryo. By Day 4, oxidative metabolism of glucose has substantially increased, providing a four-fold increase in ATP production. By Day 5, RNA synthesis has increased. These changes are dependent on progesterone-induced changes in uterine secretions. By Day 3, there is greater progesterone secretion by the corpus luteum and, by Day 4, uterine protein synthesis has increased. The nature of the uterine regulatory factor is still not known. There are changes in some uterine proteins, but no detectable change in ionic components of the uterine fluid. Only one defined potential regulator, platelet-activating factor, has been identified, the concentration of which increased during reactivation. The influence of the steroid hormones progesterone and oestradiol on the uterus and diapausing embryo, and other changes that occur later in development, are also discussed in the present review.


1987 ◽  
Vol 44 (4) ◽  
pp. 387-391
Author(s):  
Hiroshi MIKASHIMA ◽  
Shüzö TAKEHARA ◽  
Yoshito MURAMOTO ◽  
Takako KHOMARU ◽  
Michio TERASAWA ◽  
...  

1984 ◽  
Vol 101 (2) ◽  
pp. 231-NP ◽  
Author(s):  
M. B. Renfree ◽  
A. P. F. Flint ◽  
S. W. Green ◽  
R. B. Heap

ABSTRACT Ovaries were obtained from tammar wallabies at various stages of the reproductive cycle to examine the occurrence of oestrogens in corpora lutea, and the synthesis and metabolism of steroids in the corpus luteum and ovarian cortical and interstitial tissues. Corpora lutea contained oestradiol-17β and oestrone during embryonic diapause and at all stages of pregnancy studied after blastocyst activation. Aryl sulphatase, 3β-hydroxysteroid dehydrogenase and 17β-oxidoreductase were shown to be present in luteal and other ovarian tissues by incubation in vitro with labelled substrates. Aromatase was undetectable in corpora lutea or in interstitial tissue, but was present in the ovarian tissues (including follicles) which remained after removal of corpora lutea. The probable source of the oestrogens detected in the corpus luteum is discussed in relation to their role in the inhibition of follicular development during embryonic diapause. J. Endocr. (1984) 101, 231–240


2008 ◽  
Vol 20 (9) ◽  
pp. 39
Author(s):  
J. C. Fenelon ◽  
G. Shaw ◽  
M. B. Renfree

Embryonic diapause is widespread amongst mammals, but is especially common in the kangaroos and wallabies. In the tammar, Macropus eugenii, the sequence of endocrine events leading to embryonic diapause and reactivation are well defined and the blastocyst can remain in diapause for up to 11 months without cell division or apoptosis occurring (Renfree and Shaw 2000). The ovarian hormones exert their effects on the blastocyst by alterations in the endometrial secretions, but the molecular cross-talk between the endometrium and blastocyst is unknown. One possible regulator of diapause is the phospholipid PAF, an embryotrophin that acts as a trophic/survival factor for the early embryo (O'Neill 2005) partly by inactivating the expression of p53, a cell cycle inhibitor, via the PI3-K pathway. PAF is released from the tammar endometrium around the time of reactivation from diapause (Kojima et al. 1993). This study examined the expression of PAF-R and p53 in the tammar endometrium at entry into, and reactivation from, diapause. PAF-R and p53 were highly conserved with orthologueues in human and mouse. PAF-R and p53 expression was assessed by RT–PCR and both genes were expressed in the endometrium at all stages examined. Quantitative PCR (QPCR) studies performed for PAF-R in the endometrium show that levels of PAF-R vary depending on the stage examined and appear to be increasing at entry into diapause and decreasing at exit from diapause. Immunohistochemical (IHC) studies are in progress to determine the cellular location of PAF-R in the endometrium and confirm the QPCR results. QPCR and IHC studies are in progress to determine if there is any change in levels of expression or cellular location of p53 between the stages examined and how this relates to PAF-R availability. These results suggest that the control of diapause in the tammar involves interactions between multiple factors. (1) Renfree MB, Shaw G (2000) Diapause. Annu Rev Physiol 62, 353–375 (2) O'Neill C (2005) The role of Paf in embryo physiology. Human Reproduction Update 11, 215–228 (3) Kojima T et. al. (1993) Production and secretion of progesterone in vitro and presence of PAF in early pregnancy of the marsupial, Macropus eugenii. Reproduction Fertility Development 5, 15–25.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2392-2392
Author(s):  
Malwina Suszynska ◽  
Daniel Pedziwiatr ◽  
Magdalena J Kucia ◽  
Mariusz Z Ratajczak ◽  
Janina Ratajczak

Abstract Background . Almost 20 years ago, a "mystery" population of small stem cells with many of the phenotypic characteristics attributed to resting hematopoietic stem cells was identified in murine bone marrow (BM) (Stem Cells 1998, 16, 38-48). These cells expressed high levels of Sca-1, H-2K, and CD38 and low levels of Thy-1.1; they expressed CD45 antigen but were lineage-negative (lin-) for other hematopoietic markers. These cells incorporated only low levels of Rh123 and were resistant to the cytotoxic effects of 5-fluorouracil. The only phenotypic characteristic that distinguishes these cells from Sca-1+, Lin-, CD45+ Thy-1.1low long-term-reconstituting hematopoietic stem cell population is the lack of c-kit expression. In sum, this "mystery" population of small Sca-1+, lin-, c-kit- but CD45+ stem cells do not respond to hematopoietic growth factors in vitro, form in vivo spleen colonies, or reconstitute lethally irradiated mice. With our discovery of Sca-1+ Lin- CD45- very small embryonic-like stem cells (VSELs) in murine bone marrow (BM) (Leukemia 2006, 20, 857-869), we became interested in this "mystery" population of stem cells. VSELs, like the "mystery" population, are c-kit - and, if freshly isolated from BM, do not show any hematopoietic activity in standard in vitro and in vivo assays. In order to become specified to hematopoiesis, they need to be expanded over an OP-9 stromal support (Exp Hematol 2011;39:225-237). Hypothesis. Since (1) very small CD45- VSELs can be specified in OP-9 co-cultures into long-term reconstituting CD45+ HSCs, (2) the size of the "mystery" population is intermediate between VSELs and HSCs, and (3) VSELs and HSCs differ in cell surface receptor expression, we hypothesized that the "mystery" population is a missing developmental intermediate between VSELs and HSCs. Materials and Methods . Multicolor FACS analysis was employed to compare size and expression of surface markers between murine BM HSCs, the unknown population of stem cells, and VSELs. Next, the populations of small Sca-1+ H2-K+ lin- c-kit+ CD38+/- CD45+ cells (HSCs), smaller Sca-1+ H-2K+ lin- c-kit- CD38+ CD45+ cells (the "mystery" population), and very small in size Sca-1+ H-2K+ lin- c-kit- CD38+/- CD45- cells (VSELs) were purified by FACS from BM (Figure 1) and tested for in vitro colony formation. All these cell populations were primed/expanded over OP-9 support and subsequently evaluated for their hematopoietic potential after passaging in consecutive methylocellulose cultures (passages 1-4). RQ-PCR analysis was employed for detection of pluripotency marker expression as well as hematopoietic gene expression. Results . We found that, in contrast to HSCs, neither freshly sorted stem cells from the "mystery" BM population nor, as expected, VSELs grew hematopoietic colonies in standard methylcellulose cultures. This was also an important step in excluding contamination of our sorted populations with clonogenic cells. We also found that, while VSELs highly expressed Oct-4, this transcription factor was expressed at very low levels in the "mystery" population and was not detectable in HSCs. The most important observation was that the "mystery" population of stem cells became specified in OP-9-supported cultures into clonogenic HSPCs, and this specification occurred faster than the delayed specification of VSELs. VSELs first became enriched for HSPCs after acquiring CD45 antigen expression. Conclusions . Based on the results presented, we propose that the "mystery" population in murine BM is a population of stem cells intermediate between the most primitive population of BM-residing stem cells (VSELs) and the population of stem cells already specified to lympho-hematopoietic development (HSCs). Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document