239. Expression of PAF-R and p53 in the endometrium during entry into and reactivation from diapause in the tammar wallaby

2008 ◽  
Vol 20 (9) ◽  
pp. 39
Author(s):  
J. C. Fenelon ◽  
G. Shaw ◽  
M. B. Renfree

Embryonic diapause is widespread amongst mammals, but is especially common in the kangaroos and wallabies. In the tammar, Macropus eugenii, the sequence of endocrine events leading to embryonic diapause and reactivation are well defined and the blastocyst can remain in diapause for up to 11 months without cell division or apoptosis occurring (Renfree and Shaw 2000). The ovarian hormones exert their effects on the blastocyst by alterations in the endometrial secretions, but the molecular cross-talk between the endometrium and blastocyst is unknown. One possible regulator of diapause is the phospholipid PAF, an embryotrophin that acts as a trophic/survival factor for the early embryo (O'Neill 2005) partly by inactivating the expression of p53, a cell cycle inhibitor, via the PI3-K pathway. PAF is released from the tammar endometrium around the time of reactivation from diapause (Kojima et al. 1993). This study examined the expression of PAF-R and p53 in the tammar endometrium at entry into, and reactivation from, diapause. PAF-R and p53 were highly conserved with orthologueues in human and mouse. PAF-R and p53 expression was assessed by RT–PCR and both genes were expressed in the endometrium at all stages examined. Quantitative PCR (QPCR) studies performed for PAF-R in the endometrium show that levels of PAF-R vary depending on the stage examined and appear to be increasing at entry into diapause and decreasing at exit from diapause. Immunohistochemical (IHC) studies are in progress to determine the cellular location of PAF-R in the endometrium and confirm the QPCR results. QPCR and IHC studies are in progress to determine if there is any change in levels of expression or cellular location of p53 between the stages examined and how this relates to PAF-R availability. These results suggest that the control of diapause in the tammar involves interactions between multiple factors. (1) Renfree MB, Shaw G (2000) Diapause. Annu Rev Physiol 62, 353–375 (2) O'Neill C (2005) The role of Paf in embryo physiology. Human Reproduction Update 11, 215–228 (3) Kojima T et. al. (1993) Production and secretion of progesterone in vitro and presence of PAF in early pregnancy of the marsupial, Macropus eugenii. Reproduction Fertility Development 5, 15–25.

2010 ◽  
Vol 22 (9) ◽  
pp. 80
Author(s):  
J. C. Fenelon ◽  
C. O'Neill ◽  
G. Shaw ◽  
M. B. Renfree

In the tammar wallaby, Macropus eugenii, the blastocyst normally remains in embryonic diapause for 11 months without cell division or apoptosis occurring. Progesterone regulates reactivation by inducing active secretion from the endometrium, but the molecular cross-talk between the endometrium and blastocyst is unknown. This process may involve the phospholipid paf. Paf is an embryotrophin that acts as a trophic/survival factor in the early embryo, partly by inactivating (via the PI3K/Akt pathway) the expression of p53, a cell cycle arrest factor (1,2). In vitro, paf production from the tammar endometrium increases after diapause (3). This study examined the expression of the paf receptor (pafr) and p53 in the tammar endometrium and embryo at entry into, during and reactivation from diapause. Both pafr and p53 mRNA were expressed in the endometrium at all stages. However there was no quantitative change in pafr expression. In the endometrium, pafr protein is present on the membrane of the glandular epithelium at all stages examined, but p53 was not expressed in the endometrial nuclei at any stage and hence does not appear to be active. Both pafr and p53 mRNA were also expressed in the embryo from the early cleavage stages, during diapause and in the reactivated blastocyst. Pafr protein was present in the embryo both before and after diapause, but levels were greatly reduced during diapause, indicating it may be necessary for active growth. Unexpectedly, the expression of p53 in the embryo does not appear to depend on the presence or absence of pafr. p53 was expressed in the nuclei of the cleavage stage embryonic cells before diapause, but not during or after diapause. These results suggest that paf and pafr may participate in the molecular control of embryonic diapause in the tammar independent of p53. (1) Jin XL et al. (2009) Biology of Reproduction 80: 286–294.(2) O’Neill C (2005) Human Reproduction Update 11(3): 215–228.(3) Kojima T et al. (1993) Reproduction Fertility Development 5: 15–25.


1992 ◽  
Vol 4 (5) ◽  
pp. 533 ◽  
Author(s):  
G Chaturapanich ◽  
RC Jones ◽  
J Clulow

The objectives were to assess the following in a marsupial: which proteins are synthesized by the different regions of the epididymis and secreted into the lumen of the ductus; the effect of the experimental method on the detection of protein secretion; the role of the testis in regulating the protein synthesis and secretion; and whether any of the secreted proteins may associate with spermatozoa. Samples from untreated animals were collected for examination by perfusing Krebs-bicarbonate through the ductus epididymidis in vivo (microperfusion), and after incorporation of [35S]methionine during incubation of minced duct in vitro. Electrophoresis of the samples showed that the caput and corpus epididymidis (initial segments) secreted most of the proteins that were synthesized and secreted by the epididymal mucosa, and that the cauda epididymidis secreted mainly blood proteins. Also, many more proteins were secreted in vitro than into the microperfusates in vivo, or were found by Jones (1987) in micropuncture samples of epididymal plasma. The synthesis and secretion of five proteins was androgen dependent (M(r) 75,700, 30,000, 18,700, 17,400 and 12,800). Also, the luminal fluids from the testis stimulated the secretion of two proteins (M(r) 46,300 and 36,100) and inhibited the secretion of three proteins (M(r) 43,000, 32,300 and 21,400). Examination of detergent extracts of spermatozoa indicated that they lose three proteins (M(r) 28,000, 30,000 and 47,000) and gain one (M(r) 30,400) during passage through the epididymis. The method of determining protein secretion affected the findings. Protein secretion, its control and its association with spermatozoa are broadly similar in the tammar wallaby to the processes described in eutherian mammals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


2017 ◽  
Vol 10 ◽  
pp. 117906601773156 ◽  
Author(s):  
Mohammad Althubiti

Spleen tyrosine kinase (SYK) is a cytoplasmic enzyme that promotes survival and proliferation of B cells. SYK inhibition has shown promising results in the treatment of arthritis and chronic lymphocytic leukemia (CLL). However, in other context, it has been shown that SYK overexpression in epithelial cancer cells induced senescence in p53-dependent mechanism, which underscored its antineoplastic activity in vitro. Here, we show that SYK was induced in response of DNA damage in parallel with p53 levels. In addition, using chemical inhibitors of SYK reduced p53 levels in HCT116 and HT1080 cell lines, which underlines the role of SYK inhibition on p53 activity. Furthermore, SYK inhibition modulated the cell growth, which resulted in a decreasing in cell death. Interestingly, SYK expression showed a positive prognosis in patients with solid tumors in correlations with their survival rates, as expected negative correlation was seen between SYK expression and survival rate of patients with CLL. In conclusion, these findings demonstrate that SYK inhibition modulates p53 expression and activity in HCT116 and HT1080 cells. Reconsidering using of SYK inhibitors in clinical setting in the future should be evaluated carefully in accordance with these findings to prevent the formation of secondary malignancies.


Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 325-338
Author(s):  
Elizabeth J. Thornber ◽  
Marilyn B. Renfree ◽  
Gregory I. Wallace

The in vitro uptake and incorporation of [3H]ui idine by blastocysts of the tammar wallaby showed a 16- and 30-fold increase from day 0 to day 10 after removal of pouch young, respectively. Two of the six non-expanded blastocysts recovered on day 5 showed a tenfold increase in incorporation. During the first ten days after removal of pouch young the diameter of the blastocyst increased threefold. Endometrial exudate from gravid uteri had a higher protein concentration than exudate from nongravid uteri (39·5 ± 0·9 and 32·0 ± 2·0 mg/ml (mean ± s.e.m.), respectively). Endometrial exudates from uteri where the blastocyst was actively growing were found to contain six uterine-specific proteins. These were separated by gradient polyacrylamide gel electrophoresis. Two of the proteins were pre-albumins and the others were larger molecules (M.W. 153000–670000). Two proteins were only present at particular stages of pregnancy: the other four were present at all stages from diapause to birth, in exudate from gravid and nongravid uteri. The specific binding of progesterone and androstenedione to proteins in endometrial exudates or uterine flushings from pregnant wallabies was less than one per cent of the value obtained from day-5 pregnant rabbits. The ability of mouse blastocysts to take up and incorporate [3H]uridine into acidinsoluble material increased threefold in the presence of day-10 endometrial exudates from wallabies. However, this was less than ten percent of the values obtained in the presence of bovine serum albumin. The concentration of calcium in endometrial exudates increased from 23·6 to 45·2 μg/ml during pregnancy; in endometrium it remained at 88·7 μg/g (wet weight) throughout pregnancy, and in plasma it was 53·3 μg/ml. The concentration of zinc in endometrial exudates was 4·5 μg/ml; in endometrium it decreased from 21·8 to 13·3 μg/g (wet weight) during pregnancy and in plasma it was 0·6 μg/ml.


1993 ◽  
Vol 264 (1) ◽  
pp. H190-H195 ◽  
Author(s):  
J. D. Imig ◽  
D. Gebremedhin ◽  
D. R. Harder ◽  
R. J. Roman

The effect of erythrocytes (red blood cells, RBC) on vascular tone in the renal microcirculation was examined using the juxtamedullary nephron microvascular preparation perfused in vitro with a physiological salt solution containing 5% albumin. The basal diameters of the arcuate, interlobular, proximal, and distal afferent arterioles averaged 444 +/- 24, 74 +/- 3, 29 +/- 1, and 19 +/- 1 micron, respectively, when perfused with a cell-free solution at a pressure of 80 mmHg. The diameters of the arcuate and interlobular arteries increased by 14 +/- 4 and 13 +/- 4%, respectively, whereas the diameter of the proximal and distal portions of the afferent arterioles decreased by 7 +/- 2% when perfusion pressure was elevated from 80 to 160 mmHg. The addition of RBC to the perfusate reduced the basal diameters of interlobular and afferent arterioles by 11 +/- 4 and 15 +/- 3%, respectively. The maximal vasoconstrictor response was seen after the addition of only 1% RBC to the perfusate. Removal of platelets did not block the vasoconstrictor response to addition of RBC to the perfusate. The role of endothelium-derived relaxing factor (EDRF) in the vasoconstrictor response to RBC was studied by addition of nitric oxide synthase inhibitor, N omega-nitro-L-arginine (L-NNA, 100 microM) to the perfusate. L-NNA reduced the basal diameters of interlobular and afferent arterioles by 7 +/- 3 and 9 +/- 3%, respectively, and abolished the vasoconstrictor response to RBC. L-NNA had no effect on the pressure-diameter relationships of the preglomerular vasculature when added to perfusates already containing RBC.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Cheng-Hsiang Kuo ◽  
Po-Ku Chen ◽  
Bi-Ing Chang ◽  
Meng-Chen Sung ◽  
Chung-Sheng Shi ◽  
...  

AbstractLewis Y Ag (LeY) is a cell-surface tetrasaccharide that participates in angiogenesis. Recently, we demonstrated that LeY is a specific ligand of the recombinant lectin-like domain of thrombomodulin (TM). However, the biologic function of interaction between LeY and TM in endothelial cells has never been investigated. Therefore, the role of LeY in tube formation and the role of the recombinant lectin-like domain of TM—TM domain 1 (rTMD1)—in antiangiogenesis were investigated. The recombinant TM ectodomain exhibited lower angiogenic activity than did the recombinant TM domains 2 and 3. rTMD1 interacted with soluble LeY and membrane-bound LeY and inhibited soluble LeY-mediated chemotaxis of endothelial cells. LeY was highly expressed on membrane ruffles and protrusions during tube formation on Matrigel. Blockade of LeY with rTMD1 or Ab against LeY inhibited endothelial tube formation in vitro. Epidermal growth factor (EGF) receptor in HUVECs was LeY modified. rTMD1 inhibited EGF receptor signaling, chemotaxis, and tube formation in vitro, and EGF-mediated angiogenesis and tumor angiogenesis in vivo. We concluded that LeY is involved in vascular endothelial tube formation and rTMD1 inhibits angiogenesis via interaction with LeY. Administration of rTMD1 or recombinant adeno-associated virus vector carrying TMD1 could be a promising antiangiogenesis strategy.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10–5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings: Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases Trial registration number Not applicable


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Olan Jackson-Weaver ◽  
Jian Wu ◽  
Yongchao Gou ◽  
Yibu Chen ◽  
Meng Li ◽  
...  

Rationale: Epicardial epithelial-to-mesenchymal trasition (EMT) is a vital process in embryonic heart development. During EMT, epicardial cells acquire migratory and invasive properties, and differentiate into new cell types, including cardiac fibroblasts and coronary smooth muscle cells. Non-histone protein methylation is an emerging modulator of cell signaling. We have recently established a role for protein arginine methyltransferase-1 (PRMT1) in TGF-β-induced EMT in cultured cells. Objective: To determine the role of PRMT1 in epicardial EMT. Methods and Results: We investigated the role of PRMT1 in epicardial EMT in mouse epicardial cells. Embryonic day 9.5 (E9.5) tamoxifen administration of WT1-Cre ERT ;PRMT1 fl/fl ;ROSA-YFP fl/fl mouse embryos was used to delete PRMT1 in the epicardium. Epicardial PRMT1 deletion led to reduced epicardial migration into the myocardium, a thinner compact myocardial layer, and dilated coronary blood vessels at E15.5. Using the epicardial cell line MEC1, we found that PRMT1 siRNA prevented the increase in mesenchymal proteins Slug and Fibronectin and the decrease in epithelial protein E-Cadherin during TGF-β treatment-induced EMT. PRMT1 siRNA also reduced the migration and invasion of MEC1 cells. We further identified that PRMT1 siRNA also increased the expression of p53, a key regulator of the Slug degradation pathway. PRMT1 siRNA increases p53 expression by decreasing p53 degradation, and shifted p53 localization to the cytoplasm. In vitro methylation assays further demonstrated that PRMT1 methylates p53. Knockdown of p53 increased Slug levels and enhanced EMT, establishing p53 as a regulator of epicardial EMT through controlling Slug expression. Furthermore, RNAseq experiments in MEC1 cells demonstrated that 40% (545/1,351) of TGF-β-induced transcriptional changes were prevented by PRMT1 siRNA. Furthermore, when p53 and PRMT1 were simultaneously knocked down, TGF-β induced transcriptional control of 37% (201/545) of these PRMT1-dependent genes was restored. Conclusions: The PRMT1-p53-Slug pathway is necessary for epicardial EMT in cultured MEC1 cells as well as in the epicardium in vivo . Epicardial PRMT1 is required for the development of compact myocardium and coronary blood vessels.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3530
Author(s):  
Jessica Gambardella ◽  
Antonella Fiordelisi ◽  
Gaetano Santulli ◽  
Michele Ciccarelli ◽  
Federica Andrea Cerasuolo ◽  
...  

The involvement of GRK2 in cancer cell proliferation and its counter-regulation of p53 have been suggested in breast cancer even if the underlying mechanism has not yet been elucidated. Furthermore, the possibility to pharmacologically inhibit GRK2 to delay cancer cell proliferation has never been explored. We investigated this possibility by setting up a study that combined in vitro and in vivo models to underpin the crosstalk between GRK2 and p53. To reach this aim, we took advantage of the different expression of p53 in cell lines of thyroid cancer (BHT 101 expressing p53 and FRO cells, which are p53-null) in which we overexpressed or silenced GRK2. The pharmacological inhibition of GRK2 was achieved using the specific inhibitor KRX-C7. The in vivo study was performed in Balb/c nude mice, where we treated BHT-101 or FRO-derived tumors with KRX-C7. In our in vitro model, FRO cells were unaffected by GRK2 expression levels, whereas BHT-101 cells were sensitive, thus suggesting a role for p53. The regulation of p53 by GRK2 is due to phosphorylative events in Thr-55, which induce the degradation of p53. In BHT-101 cells, the pharmacologic inhibition of GRK2 by KRX-C7 increased p53 levels and activated apoptosis through the mitochondrial release of cytochrome c. These KRX-C7-mediated events were also confirmed in cancer allograft models in nude mice. In conclusion, our data showed that GRK2 counter-regulates p53 expression in cancer cells through a kinase-dependent activity. Our results further corroborate the anti-proliferative role of GRK2 inhibitors in p53-sensitive tumors and propose GRK2 as a therapeutic target in selected cancers.


Sign in / Sign up

Export Citation Format

Share Document