scholarly journals Monitoring uterine contractility in mice using a transcervical intrauterine pressure catheter

Reproduction ◽  
2018 ◽  
Vol 155 (5) ◽  
pp. 447-456 ◽  
Author(s):  
Michael F Robuck ◽  
Christine M O’Brien ◽  
Kelsi M Knapp ◽  
Sheila D Shay ◽  
James D West ◽  
...  

In mouse models used to study parturition or pre-clinical therapeutic testing, measurement of uterine contractions is limited to either ex vivo isometric tension or operative intrauterine pressure (IUP). The goal of this study was to: (1) develop a method for transcervical insertion of a pressure catheter to measure in vivo intrauterine contractile pressure during mouse pregnancy, (2) determine whether this method can be utilized numerous times in a single mouse pregnancy without affecting the timing of delivery or fetal outcome and (3) compare the in vivo contractile activity between mouse models of term and preterm labor (PTL). Visualization of the cervix allowed intrauterine pressure catheter (IUPC) placement into anesthetized pregnant mice (plug = day 1, delivery = day 19.5). The amplitude, frequency, duration and area under the curve (AUC) of IUP was lowest on days 16–18, increased significantly (P < 0.05) on the morning of day 19 and reached maximal levels during by the afternoon of day 19 and into the intrapartum period. An AUC threshold of 2.77 mmHg discriminated between inactive labor (day 19 am) and active labor (day 19 pm and intrapartum period). Mice examined on a single vs every experimental timepoint did not have significantly different IUP, timing of delivery, offspring number or fetal/neonatal weight. The IUP was significantly greater in LPS-treated and RU486-treated mouse models of PTL compared to time-matched vehicle control mice. Intrapartum IUP was not significantly different between term and preterm mice. We conclude that utilization of a transcervical IUPC allows sensitive assessment of in vivo uterine contractile activity and labor progression in mouse models without the need for operative approaches.

2010 ◽  
Vol 42 (2) ◽  
pp. 310-316 ◽  
Author(s):  
Stephanie L. Pierce ◽  
William Kutschke ◽  
Rafael Cabeza ◽  
Sarah K. England

Transgenic and knockout mouse models have proven useful in the study of genes necessary for parturition—including genes that affect the timing and/or progression of labor contractions. However, taking full advantage of these models will require a detailed characterization of the contractile patterns in the mouse uterus. Currently the best methodology for this has been measurement of isometric tension in isolated muscle strips in vitro. However, this methodology does not provide a real-time measure of changes in uterine pressure over the course of pregnancy. Recent advances have opened the possibility of using radiotelemetric devices to more accurately and comprehensively study intrauterine pressure in vivo. We tested the effectiveness of this technology in the mouse, in both wild-type (WT) mice and a mouse model of defective parturition (SK3 channel-overexpressing mice), after surgical implant of telemetry transmitters into the uterine horn. Continuous recordings from day 18 of pregnancy through delivery revealed that WT mice typically deliver during the 12-h dark cycle after 19.5 days postcoitum. In these mice, intrauterine pressure gradually increases during this cycle, to threefold greater than that measured during the 12-h cycle before delivery. SK3-overexpressing mice, by contrast, exhibited lower intrauterine pressure over the same period. These results are consistent with the outcome of previous in vitro studies, and they indicate that telemetry is an accurate method for measuring uterine contraction, and hence parturition, in mice. The use of this technology will lead to important novel insights into changes in intrauterine pressure during the course of pregnancy.


Author(s):  
Beata Modzelewska ◽  
Marcin Jóźwik ◽  
Tomasz Kleszczewski ◽  
Stanisław Sulkowski ◽  
Maciej Jóźwik

Objective: The aim of the study was to determine the influence of beta-adrenoceptor (ADRB) antagonists on contractile activity of the nonpregnant human uterus in patients affected by gynecological malignancies. Design: This was a controlled and prospective ex vivo study. Setting: The work was conducted as a collaboration between 4 academic departments. Materials and Methods: Myometrial specimens were obtained from women undergoing hysterectomy for benign gynecological disorders (reference group; N = 15), and ovarian (N = 15), endometrial (N = 15), synchronous ovarian-endometrial (N = 3), and cervical cancer (N = 10). Contractions of myometrial strips in an organ bath before and after applications of ADRB antagonists (propranolol, bupranolol, SR 59230A, and butoxamine) were studied under isometric conditions. Results: Propranolol and bupranolol attenuated contractions in the endometrial and cervical cancer groups similar to that in the reference group (all p < 0.05), whereas opposite effects were observed in the ovarian and synchronous ovarian-endometrial cancer groups. SR 59230A and butoxamine significantly increased contractions in the ovarian cancer group (both p < 0.001). Limitations: These results require now to be placed into a firm clinical context. Conclusions: Our study indicates that ovarian cancer considerably alters contractile activity of the nonpregnant human uterus in response to ADRB antagonists. This suggests a pathogenetic role of beta-adrenergic pathways in this malignancy. Furthermore, propranolol and bupranolol substantially influence spontaneous uterine contractility.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3325
Author(s):  
Sofia Karkampouna ◽  
Danny van der Helm ◽  
Mario Scarpa ◽  
Bart van Hoek ◽  
Hein W. Verspaget ◽  
...  

Oncofetal protein, CRIPTO, is silenced during homeostatic postnatal life and often re-expressed in different neoplastic processes, such as hepatocellular carcinoma. Given the reactivation of CRIPTO in pathological conditions reported in various adult tissues, the aim of this study was to explore whether CRIPTO is expressed during liver fibrogenesis and whether this is related to the disease severity and pathogenesis of fibrogenesis. Furthermore, we aimed to identify the impact of CRIPTO expression on fibrogenesis in organs with high versus low regenerative capacity, represented by murine liver fibrogenesis and adult murine heart fibrogenesis. Circulating CRIPTO levels were measured in plasma samples of patients with cirrhosis registered at the waitlist for liver transplantation (LT) and 1 year after LT. The expression of CRIPTO and fibrotic markers (αSMA, collagen type I) was determined in human liver tissues of patients with cirrhosis (on a basis of viral hepatitis or alcoholic disease), in cardiac tissue samples of patients with end-stage heart failure, and in mice with experimental liver and heart fibrosis using immuno-histochemical stainings and qPCR. Mouse models with experimental chronic liver fibrosis, induced with multiple shots of carbon tetrachloride (CCl4) and acute liver fibrosis (one shot of CCl4), were evaluated for CRIPTO expression and fibrotic markers. CRIPTO was overexpressed in vivo (Adenoviral delivery) or functionally sequestered by ALK4Fc ligand trap in the acute liver fibrosis mouse model. Murine heart tissues were evaluated for CRIPTO and fibrotic markers in three models of heart injury following myocardial infarction, pressure overload, and ex vivo induced fibrosis. Patients with end-stage liver cirrhosis showed elevated CRIPTO levels in plasma, which decreased 1 year after LT. Cripto expression was observed in fibrotic tissues of patients with end-stage liver cirrhosis and in patients with heart failure. The expression of CRIPTO in the liver was found specifically in the hepatocytes and was positively correlated with the Model for End-stage Liver Disease (MELD) score for end-stage liver disease. CRIPTO expression in the samples of cardiac fibrosis was limited and mostly observed in the interstitial cells. In the chronic and acute mouse models of liver fibrosis, CRIPTO-positive cells were observed in damaged liver areas around the central vein, which preceded the expression of αSMA-positive stellate cells, i.e., mediators of fibrosis. In the chronic mouse models, the fibrosis and CRIPTO expression were still present after 11 weeks, whereas in the acute model the liver regenerated and the fibrosis and CRIPTO expression resolved. In vivo overexpression of CRIPTO in this model led to an increase in fibrotic markers, while blockage of CRIPTO secreted function inhibited the extent of fibrotic areas and marker expression (αSMA, Collagen type I and III) and induced higher proliferation of residual healthy hepatocytes. CRIPTO expression was also upregulated in several mouse models of cardiac fibrosis. During myocardial infarction CRIPTO is upregulated initially in cardiac interstitial cells, followed by expression in αSMA-positive myofibroblasts throughout the infarct area. After the scar formation, CRIPTO expression decreased concomitantly with the αSMA expression. Temporal expression of CRIPTO in αSMA-positive myofibroblasts was also observed surrounding the coronary arteries in the pressure overload model of cardiac fibrosis. Furthermore, CRIPTO expression was upregulated in interstitial myofibroblasts in hearts cultured in an ex vivo model for cardiac fibrosis. Our results are indicative for a functional role of CRIPTO in the induction of fibrogenesis as well as a potential target in the antifibrotic treatments and stimulation of tissue regeneration.


Author(s):  
Jesper Emil Jakobsgaard ◽  
Jacob Andresen ◽  
Frank V. de Paoli ◽  
Kristian Vissing

Skeletal muscle phenotype may influence the response sensitivity of myocellular regulatory mechanisms to contractile activity. To examine this, we employed an ex vivo endurance-type dynamic contraction model to evaluate skeletal muscle phenotype-specific protein signaling responses in rat skeletal muscle. Preparations of slow-twitch soleus and fast-twitch extensor digitorum longus skeletal muscle from 4-wk old female Wistar rats were exposed to an identical ex vivo dynamic endurance-type contraction paradigm consisting of 40 minutes of stretch-shortening contractions under simultaneous low-frequency electrostimulation delivered in an intermittent pattern. Phosphorylation of proteins involved in metabolic signaling and signaling for translation initiation was evaluated at 0, 1, and 4 hours after stimulation by immunoblotting. For both muscle phenotypes, signaling related to metabolic events was upregulated immediately after stimulation, with concomitant absence of signaling for translation-initiation. Signaling for translation-initiation was then activated in both muscle phenotypes at 1-4 hours after stimulation, coinciding with attenuated metabolic signaling. The recognizable pattern of signaling responses support how our ex vivo dynamic muscle contraction model can be utilized to infer a stretch-shortening contraction pattern resembling stretch-shortening contraction of in vivo endurance exercise. Moreover, using this model, we observed that some specific signaling proteins adhering to metabolic events or to translation initation exhibited phosphorylation changes in a phenotype-dependent manner, whereas other signaling proteins exhibited phenotype-independent changes. These findings may aid the interpretation of myocellular signaling outcomes adhering to mixed muscle samples collected during human experimental trials.


2020 ◽  
Vol 12 (548) ◽  
pp. eaav9760
Author(s):  
Adriana De La Fuente ◽  
Serena Zilio ◽  
Jimmy Caroli ◽  
Dimitri Van Simaeys ◽  
Emilia M. C. Mazza ◽  
...  

Local delivery of anticancer agents has the potential to maximize treatment efficacy and minimize the acute and long-term systemic toxicities. Here, we used unsupervised systematic evolution of ligands by exponential enrichment to identify four RNA aptamers that specifically recognized mouse and human myeloid cells infiltrating tumors but not their peripheral or circulating counterparts in multiple mouse models and from patients with head and neck squamous cell carcinoma (HNSCC). The use of these aptamers conjugated to doxorubicin enhanced the accumulation and bystander release of the chemotherapeutic drug in both primary and metastatic tumor sites in breast and fibrosarcoma mouse models. In the 4T1 mammary carcinoma model, these doxorubicin-conjugated aptamers outperformed Doxil, the first clinically approved highly optimized nanoparticle for targeted chemotherapy, promoting tumor regression after just three administrations with no detected changes in weight loss or blood chemistry. These RNA aptamers recognized tumor infiltrating myeloid cells in a variety of mouse tumors in vivo and from human HNSCC ex vivo. This work suggests the use of RNA aptamers for the detection of myeloid-derived suppressor cells in humans and for a targeted delivery of chemotherapy to the tumor microenvironment in multiple malignancies.


Reproduction ◽  
2017 ◽  
Vol 153 (5) ◽  
pp. 565-576 ◽  
Author(s):  
Amol R Padol ◽  
Susanth V Sukumaran ◽  
Abdul Sadam ◽  
Manickam Kesavan ◽  
Kandasamy Arunvikram ◽  
...  

High cholesterol is known to negatively affect uterine contractility inex vivoconditions. The aim of the present study was to reveal the effect ofin vivohypercholesterolemia on spontaneous and oxytocin-induced uterine contractility in late pregnant mouse uterus. Female Swiss albino mice were fed with high cholesterol (HC) diet (0.5% sodium cholate, 1.25% cholesterol and 15% fat) for 6 weeks and then throughout the gestation period after mating. On day 19 of gestation, serum cholesterol level was increased more than 3-fold while triglycerides level was reduced in HC diet-fed animals as compared to control animals fed with a standard diet. In tension experiments, neither the mean integral tension of spontaneous contractility nor the response to CaCl2in high K+-depolarized tissues was altered, but the oxytocin-induced concentration-dependent contractile response in uterine strips was attenuated in hypercholesterolemic mice as compared to control. Similarly, hypercholesterolemia dampened concentration-dependent uterine contractions elicited by a GNAQ protein activator,Pasteurella multocidatoxin. However, it had no effect on endogenous oxytocin level either in plasma or in uterine tissue. It also did not affect the prostaglandin release in oxytocin-stimulated tissues. Western blot data showed a significant increase in caveolin-1 and GRK6 proteins but decline in oxytocin receptor, GNAQ and RHOA protein expressions in hypercholesterolemic mouse uterus. The results of the present study suggest that hypercholesterolemia may attenuate the uterotonic action of oxytocin in late pregnancy by causing downregulation of oxytocin receptors and suppressing the signaling efficacy through GNAQ and RHOA proteins.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3836-3836
Author(s):  
Zale P. Bernstein ◽  
Thomas Dougherty ◽  
Stanley A. Schwartz ◽  
Sandra Gollnick ◽  
Carleton Stewart ◽  
...  

Abstract HIV is able to elude both cellular and humoral arms of the immune system; thereby making viral control difficult. Extra corporeal photochemotherapy (ECP) or photopheresis is an immunomodulatory therapy in which lymphocytes are reinfused into the host after exposure to a photoactive compound and ultraviolet A light. It is an effective therapeutic approach to several disorders of the immune system including acute and chronic graft-versus-host disease, scleroderma, and cutaneous T-cell lymphoma. This process may offer a novel approach to viral control with minimal or no toxicity. We initiated an ex vivo and subsequently a clinical pilot trial utilizing Benzoporphyrin Derivative as the photosensitive compound. Ex vivo dosing studies identified the minimum energy levels of light exposure and concentrations of BPD that eradicated both cell-free and cell-associated HIV-1 infectivity without destroying the virus particles or infected leukocytes. Leukocytes so treated remained viable. They did demonstrate altered cytokine and chemokine expression with apoptosis induced in a minority of CD4 but not CD8 positive cells. A pilot in vivo, 24 week clinical trial in seven HIV-1 infected patients (all were required, upon entry, to have viral loads of > 10,000) using the photopheresis parameters established above demonstrated that the treatment was well tolerated and beneficial. Three individuals who had rapidly rising viral loads prior to initiating therapy stabilized once treatment began. Two of which had a (sustained) greater than.5 log decrement and 5 had stable plasma viral loads (less than a.5 log increment or decrement) with varied effects on absolute CD4 and CD8 positive lymphocytes counts. One subject achieved a greater than 1 log decrement in HIV-1 plasma viral load also developed undetectable in vivo cell-free and cell-associated HIV-1 infectivity while demonstrating an increased in vitro lymphocyte mitogen stimulation index. Subsequently, under amended protocol 3 additional 12 month courses were administered to one additional patient and two of the previous enrollees. The area under the curve for viral load (viral load x # of weeks) for these ten courses of therapy showed a significant decrease from pre to post therapy (p 0.007). There were no significant changes in CD4 or CD8 numbers area under the curve (CD4 number # of weeks and CD8 number x # of weeks). None of the subjects developed an AIDS defining illness during the course of therapy nor were there any treatment associated toxicities. These studies suggest that ECP augments activity of various arms of the immune system without any significant toxicity and may be effective in controlling HIV replication. We have now instituted a Phase II study utilizing long-term photopheresis (twice monthly for 48 weeks) to further determine efficacy and mechanism of activity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1257-1257
Author(s):  
Zale P. Bernstein ◽  
Thomas Dougherty ◽  
Stanley Schwartz ◽  
Sandra Gollnick ◽  
Carleton Stewart ◽  
...  

Abstract HIV is able to elude both cellular and humoral arms of the immune system; thereby making viral control difficult. Extra corporeal photochemotherapy (ECP) or photopheresis is an immunomodulatory therapy in which lymphocytes are reinfused into the host after exposure to a photoactive compound and ultraviolet A light. It is an effective therapeutic approach to several disorders of the immune system including acute and chronic graft-versus-host disease, scleroderma, and cutaneous T-cell lymphoma. This process may offer a novel approach to viral control with minimal or no toxicity. We initiated an ex vivo and subsequently a clinical pilot trial utilizing Benzoporphyrin Derivative as the photosensitive compound. Ex vivo dosing studies identified the minimum energy levels of light exposure and concentrations of BPD that eradicated both cell-free and cell-associated HIV-1 infectivity without destroying the virus particles or infected leukocytes. Leukocytes so treated remained viable. They did demonstrate altered cytokine and chemokine expression with apoptosis induced in a minority of CD4 but not CD8 positive cells. Furthermore, there was a statistically significant increase in cytolytic T-cell activity expressed as percentage of granzyme-B release. A pilot in vivo, 24 week clinical trial in seven HIV-1 infected patients (all were required, upon entry, to have viral loads of &gt; 10,000) using the photopheresis parameters established above demonstrated that the treatment was well tolerated and beneficial. Three individuals who had rapidly rising viral loads prior to initiating therapy stabilized once treatment began. Two of which had a (sustained) greater than .5 log decrement and 5 had stable plasma viral loads (less than a .5 log increment or decrement) with varied effects on absolute CD4 and CD8 positive lymphocytes counts. One subject achieved a greater than 1 log decrement in HIV-1 plasma viral load also developed undetectable in vivo cell-free and cell-associated HIV-1 infectivity while demonstrating an increased in vitro lymphocyte mitogen stimulation index. Subsequently, under amended and successor protocol 5 additional 12 month courses were administered to three additional patients and two of the previous enrollees. The area under the curve for viral load (viral load x # of weeks) for these twelve courses of therapy showed a significant decrease from pre to post therapy (p 0.007). There were no significant changes in CD4 or CD8 numbers area under the curve (CD4 number # of weeks and CD8 number x # of weeks). None of the subjects developed an AIDS defining illness during the course of therapy nor were there any treatment associated toxicities. These studies suggest that ECP augments activity of various arms of the immune system without any significant toxicity and may be effective in controlling HIV replication. We now plan a randomized Phase II study utilizing long-term photopheresis (twice monthly for 48 weeks) in addition to anti-retroviral therapy versus anti-retroviral therapy alone to further determine efficacy and mechanism of activity.


2009 ◽  
Vol 122 (1) ◽  
pp. 135-144 ◽  
Author(s):  
Benjamin H. Beck ◽  
Hyung-Gyoon Kim ◽  
Hyunki Kim ◽  
Sharon Samuel ◽  
Zhiyong Liu ◽  
...  

2021 ◽  
Vol 118 (11) ◽  
pp. e2011643118
Author(s):  
Mary C. Peavey ◽  
San-Pin Wu ◽  
Rong Li ◽  
Jian Liu ◽  
Olivia M. Emery ◽  
...  

Uterine contractile dysfunction leads to pregnancy complications such as preterm birth and labor dystocia. In humans, it is hypothesized that progesterone receptor isoform PGR-B promotes a relaxed state of the myometrium, and PGR-A facilitates uterine contraction. This hypothesis was tested in vivo using transgenic mouse models that overexpress PGR-A or PGR-B in smooth muscle cells. Elevated PGR-B abundance results in a marked increase in gestational length compared to control mice (21.1 versus 19.1 d respectively, P < 0.05). In both ex vivo and in vivo experiments, PGR-B overexpression leads to prolonged labor, a significant decrease in uterine contractility, and a high incidence of labor dystocia. Conversely, PGR-A overexpression leads to an increase in uterine contractility without a change in gestational length. Uterine RNA sequencing at midpregnancy identified 1,174 isoform-specific downstream targets and 424 genes that are commonly regulated by both PGR isoforms. Gene signature analyses further reveal PGR-B for muscle relaxation and PGR-A being proinflammatory. Elevated PGR-B abundance reduces Oxtr and Trpc3 and increases Plcl2 expression, which manifests a genetic profile of compromised oxytocin signaling. Functionally, both endogenous PLCL2 and its paralog PLCL1 can attenuate uterine muscle cell contraction in a CRISPRa-based assay system. These findings provide in vivo support that PGR isoform levels determine distinct transcriptomic landscapes and pathways in myometrial function and labor, which may help further the understanding of abnormal uterine function in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document