scholarly journals Emerging role for SRC family kinases in junction dynamics during spermatogenesis

Reproduction ◽  
2019 ◽  
Vol 157 (3) ◽  
pp. R85-R94
Author(s):  
Xiang Xiao ◽  
Yue Yang ◽  
Baiping Mao ◽  
C Yan Cheng ◽  
Ya Ni

SRC family kinases (SFKs) are known regulators of multiple cellular events, including cell movement, differentiation, proliferation, survival and apoptosis. SFKs are expressed virtually by all mammalian cells. They are non-receptor protein kinases that phosphorylate a variety of cellular proteins on tyrosine, leading to the activation of protein targets in response to environmental stimuli. Among SFKs, SRC, YES and FYN are the ubiquitously expressed and best studied members. In fact, SRC, the prototypical SFK, was the first tyrosine kinase identified in mammalian cells. Studies have shown that SFKs are regulators of cell junctions, and function in endocytosis and membrane trafficking to regulate junction restructuring events. Herein, we briefly summarize the recent findings in the field regarding the role of SFKs in the testis in regulating spermatogenesis, particularly in Sertoli–Sertoli and Sertoli–germ cell adhesion. While it is almost 50 years since the identification of the oncogene v-Src encoded by Rous sarcoma transforming virus, the understanding of SFK involvement during spermatogenesis in the testis remains far behind that in other epithelia and tissues. The goal of this review is to bridge this gap.

2002 ◽  
Vol 13 (9) ◽  
pp. 3078-3095 ◽  
Author(s):  
Annette L. Boman ◽  
Paul D. Salo ◽  
Melissa J. Hauglund ◽  
Nicole L. Strand ◽  
Shelly J. Rensink ◽  
...  

Golgi-localized γ-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ∼25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs andVPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1131 ◽  
Author(s):  
Purvi C. Trivedi ◽  
Jordan J. Bartlett ◽  
Thomas Pulinilkunnil

Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.


Author(s):  
L.R. Rohrschneider ◽  
M.J. Rosok ◽  
L.E. Gentry

Rous sarcoma virus (RSV) was originally isolated from a fibrosarcoma of a chicken. This virus also will efficiently infect and transform all avian cells in culture as well as most mammalian cells. The mechanism of transformation by RSV is therefore universal and this system offers an excellent opportunity to investigate the mechanism of neoplastic transformation.


2001 ◽  
Vol 114 (19) ◽  
pp. 3413-3418 ◽  
Author(s):  
Annette L. Boman

The GGA proteins are a novel family of proteins that were discovered nearly simultaneously by several labs studying very different aspects of membrane trafficking. Since then, several studies have described the GGA proteins and their functions in yeast and mammalian cells. Four protein domains are present in all GGA proteins, as defined by sequence homology and function. These different domains interact directly with ARF proteins, cargo and clathrin. Alteration of the levels of GGA proteins by gene knockout or overexpression affects specific trafficking events between the trans-Golgi network and endosomes. These data suggest that GGAs function as ARF-dependent, monomeric clathrin adaptors to facilitate cargo sorting and vesicle formation at the trans-Golgi network.


2014 ◽  
Vol 112 (2) ◽  
pp. 602-606 ◽  
Author(s):  
Alexander Polster ◽  
Stefano Perni ◽  
Hicham Bichraoui ◽  
Kurt G. Beam

Excitation–contraction (EC) coupling in skeletal muscle depends upon trafficking of CaV1.1, the principal subunit of the dihydropyridine receptor (DHPR) (L-type Ca2+ channel), to plasma membrane regions at which the DHPRs interact with type 1 ryanodine receptors (RyR1) in the sarcoplasmic reticulum. A distinctive feature of this trafficking is that CaV1.1 expresses poorly or not at all in mammalian cells that are not of muscle origin (e.g., tsA201 cells), in which all of the other nine CaV isoforms have been successfully expressed. Here, we tested whether plasma membrane trafficking of CaV1.1 in tsA201 cells is promoted by the adapter protein Stac3, because recent work has shown that genetic deletion of Stac3 in skeletal muscle causes the loss of EC coupling. Using fluorescently tagged constructs, we found that Stac3 and CaV1.1 traffic together to the tsA201 plasma membrane, whereas CaV1.1 is retained intracellularly when Stac3 is absent. Moreover, L-type Ca2+ channel function in tsA201 cells coexpressing Stac3 and CaV1.1 is quantitatively similar to that in myotubes, despite the absence of RyR1. Although Stac3 is not required for surface expression of CaV1.2, the principle subunit of the cardiac/brain L-type Ca2+ channel, Stac3 does bind to CaV1.2 and, as a result, greatly slows the rate of current inactivation, with Stac2 acting similarly. Overall, these results indicate that Stac3 is an essential chaperone of CaV1.1 in skeletal muscle and that in the brain, Stac2 and Stac3 may significantly modulate CaV1.2 function.


2015 ◽  
Vol 211 (4) ◽  
pp. 765-774 ◽  
Author(s):  
Ewa Zlotek-Zlotkiewicz ◽  
Sylvain Monnier ◽  
Giovanni Cappello ◽  
Mael Le Berre ◽  
Matthieu Piel

The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 935 ◽  
Author(s):  
Lee Dolat ◽  
Raphael H Valdivia

Chlamydia trachomatisis the most prevalent sexually transmitted bacterial pathogen and the leading cause of preventable blindness in the developing world.C. trachomatisinvades the epithelium of the conjunctiva and genital tract and replicates within an intracellular membrane-bound compartment termed the inclusion. To invade and replicate in mammalian cells,Chlamydiaremodels epithelial surfaces by reorganizing the cytoskeleton and cell–cell adhesions, reprograms membrane trafficking, and modulates cell signaling to dampen innate immune responses. If the infection ascends to the upper female genital tract, it can result in pelvic inflammatory disease and tissue scarring.C. trachomatisinfections are associated with infertility, ectopic pregnancies, the fibrotic disorder endometriosis, and potentially cancers of the cervix and uterus. Unfortunately, the molecular mechanisms by which this clinically important human pathogen subverts host cellular functions and causes disease have remained relatively poorly understood because of the dearth of molecular genetic tools to studyChlamydiaeand limitations of bothin vivoandin vitroinfection models. In this review, we discuss recent advances in the experimental molecular tool kit available to dissectC. trachomatisinfections with a special focus onChlamydia-induced epithelial barrier disruption by regulating the structure, function, and dynamics of epithelial cell–cell junctions.


2018 ◽  
Vol 46 (4) ◽  
pp. 911-917 ◽  
Author(s):  
Norihiko Ohbayashi ◽  
Mitsunori Fukuda

Historically, studies on the maturation and intracellular transport of melanosomes in melanocytes have greatly contributed to elucidating the general mechanisms of intracellular transport in many different types of mammalian cells. During melanosome maturation, melanosome cargoes including melanogenic enzymes (e.g. tyrosinase) are transported from endosomes to immature melanosomes by membrane trafficking, which must require a membrane fusion process likely regulated by SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors]. In the present study, we review the literature concerning the expression and function of SNAREs (e.g. v-SNARE vesicle-associated membrane protein 7 and t-SNAREs syntaxin-3/13 and synaptosomal-associated protein-23) in melanocytes, especially in regard to the fusion process in which melanosome cargoes are finally delivered to immature melanosomes. We also describe the recent discovery of the SNARE recycling system on mature melanosomes in melanocytes. Such SNARE dynamics, especially the SNARE recycling system, on melanosomes will be useful in understanding as yet unidentified SNARE dynamics on other organelles.


2018 ◽  
Vol 11 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Jianqun Zheng ◽  
Hao Liu ◽  
Lei Zhu ◽  
Yawen Chen ◽  
Huijie Zhao ◽  
...  

Abstract Cilia are cellular protrusions containing nine microtubule (MT) doublets and function to propel cell movement or extracellular liquid flow through beating or sense environmental stimuli through signal transductions. Cilia require the central pair (CP) apparatus, consisting of two CP MTs covered with projections of CP proteins, for planar strokes. How the CP MTs of such ‘9 + 2’ cilia are constructed, however, remains unknown. Here we identify Spef1, an evolutionarily conserved microtubule-bundling protein, as a core CP MT regulator in mammalian cilia. Spef1 was selectively expressed in mammalian cells with 9 + 2 cilia and specifically localized along the CP. Its depletion in multiciliated mouse ependymal cells by RNAi completely abolished the CP MTs and markedly attenuated ciliary localizations of CP proteins such as Hydin and Spag6, resulting in rotational beat of the ependymal cilia. Spef1, which binds to MTs through its N-terminal calponin-homologous domain, formed homodimers through its C-terminal coiled coil region to bundle and stabilize MTs. Disruption of either the MT-binding or the dimerization activity abolished the ability of exogenous Spef1 to restore the structure and functions of the CP apparatus. We propose that Spef1 bundles and stabilizes central MTs to enable the assembly and functions of the CP apparatus.


Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 89-91
Author(s):  
Shin-ichi Tate

The field of molecular biology has provided great insights into the structure and function of key molecules. Thanks to this area of research, we can now grasp the biological details of DNA and have characterised an enormous number of molecules in massive data bases. These 'biological periodic tables' have allowed scientists to connect molecules to particular cellular events, furthering scientific understanding of biological processes. However, molecular biology has yet to answer questions regarding 'higher-order' molecular architecture, such as that of chromatin. Chromatin is the molecular material that serves as the building block for chromosomes, the structures that carry an organism's genetic information inside of the cell's nucleus. Understanding the physical properties of chromatin is crucial in developing a more thorough picture of how chromatin's structure relate to its key cellular functions. Moreover, by establishing a physical model of chromatin, scientists will be able to open the doors into the true inner workings of the cell nucleus. Professor Shin-ichi Tate and his team of researchers at Hiroshima University's Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), are attempting to do just that. Through a five-year grant funded by the Platform for Dynamic Approaches to Living Systems from the Ministry of Education, Culture, Sports, Science and Technology, Tate is aiming to gain a clearer understanding of the structure and dynamics of chromatin.


Sign in / Sign up

Export Citation Format

Share Document