Differentiation of Fetal Sertoli Cells in the Adult Testis

Reproduction ◽  
2021 ◽  
Author(s):  
Tetsuhiro Yokonishi ◽  
Blanche Capel

Sertoli cells proliferate and construct seminiferous tubules during fetal life, then undergo differentiation and maturation in the prepubertal testes. In the adult testes, mature Sertoli cells maintain spermatogonia and support spermatogenesis during the entire lifetime. Although Sertoli-like cells have been derived from iPS cells, they tend to remain immature. To investigate whether Sertoli cells can spontaneously acquire the ability to support spermatogenesis when transferred into the adult testis, we transplanted mouse fetal testicular cells into a Sertoli-depleted adult testis. We found that donor E12.5, E14.5 and E16.5 Sertoli cells colonized adult seminiferous tubules and supported host spermatogenesis two months after transplantation, demonstrating that immature fetal Sertoli cells can undergo sufficient maturation in the adult testis to become functional. This technique will be useful to analyze the developmental process of Sertoli cell maturation, and to investigate the potential of iPS-derived Sertoli cells to colonize, undergo maturation, and support spermatogenesis within the testis environment.

Reproduction ◽  
2012 ◽  
Vol 143 (5) ◽  
pp. 663-672 ◽  
Author(s):  
Tomoko Kato ◽  
Michiyo Esaki ◽  
Ayami Matsuzawa ◽  
Yayoi Ikeda

The orphan nuclear receptor steroidogenic factor 1 (NR5A1 (SF-1)) is expressed in both Sertoli and Leydig cells in the testes. This study investigates the postnatal development of the testes of a gonad-specific Nr5a1 knockout (KO) mouse, in which Nr5a1 was specifically inactivated. The KO testes appeared histologically normal from postnatal day 0 (P0) until P7. However, disorganized germ cells, vacuoles, and giant cells appeared by P14 in the seminiferous tubules of KO but not control mice. Expression of NR5A1 and various factors was examined by immunohistochemistry (IHC). The number of NR5A1-positive Sertoli cells in the KO testes was lower compared with controls at all the developmental stages and decreased to nearly undetectable levels by P21. IHC for anti-Müllerian hormone and p27, immature and mature Sertoli cell markers, respectively, indicated a delay in Sertoli cell maturation in the KO testes. The number of Sertoli cell-expressing factors involved in Sertoli cell differentiation including WT1, SOX9, GATA4, and androgen receptor were lower in the KO testes compared with controls. Furthermore, fewer proliferating cell nuclear antigen-positive proliferative germ cells were observed, and the number of TUNEL-labeled cells was significantly higher in the KO testes compared with controls at P14 and P21, indicating impaired spermatogenesis. IHC for CYP11A1 (SCC) indicated the presence of steroidogenic Leydig cells in the interstitium of the KO testes at all stages examined. These results suggest that NR5A1 is essential for Sertoli cell maturation and therefore spermatogenesis, during postnatal testis development.


Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1759-1766 ◽  
Author(s):  
K. Yomogida ◽  
H. Ohtani ◽  
H. Harigae ◽  
E. Ito ◽  
Y. Nishimune ◽  
...  

GATA-1 is an essential factor for the transcriptional activation of erythroid-specific genes, and is also abundantly expressed in a discrete subset of cells bordering the seminiferous epithelium in tubules of the murine testis. In examining normal and germ-line defective mutant mice, we show here that GATA-1 is expressed only in the Sertoli cell lineage in mouse testis. GATA-1 expression in Sertoli cells is induced concomitantly with the first wave of spermatogenesis, and GATA-1-positive cells are uniformly distributed among all tubules during prepubertal testis development. However, the number of GATA-1-positive cells declines thereafter and were found only in the peripheral zone of seminiferous tubules in stages VII, VIII and IX of spermatogenesis in the adult mouse testis. In contrast, virtually every Sertoli cell in mutant W/Wv, jsd/jsd or cryptorchid mice (all of which lack significant numbers of germ cells) expresses GATA-1, thus showing that the expression of this transcription factor is negatively controlled by the maturing germ cells. These observations suggest that transcription factor GATA-1 is a developmental stage- and spermatogenic cycle-specific regulator of gene expression in Sertoli cells.


2010 ◽  
Vol 22 (9) ◽  
pp. 66
Author(s):  
P. K. Nicholls ◽  
P. G. Stanton ◽  
K. L. Walton ◽  
R. I. McLachlan ◽  
L. O'Donnell ◽  
...  

Spermatogenesis is absolutely dependent on follicle stimulating hormone (FSH) and androgens; acute suppression of these hormones inhibits germ cell development and thus sperm production. The removal of intercellular junctions and release of spermatids by the Sertoli cell, a process known as spermiation, is particularly sensitive to acute hormone suppression(1). To define the molecular mechanisms that mediate FSH and androgen effects in the testis, we investigated the expression and hormonal regulation of micro-RNAs (miRNA), small non-coding RNAs that regulate protein translation and modify cellular responses. By array analysis, we identified 23 miRNAs that were upregulated >2-fold in stage VIII seminiferous tubules following hormone suppression, and in vitro in primary Sertoli cells. We subsequently validated the expression and hormonal regulation of several miRNAs, including miR-23b, -30d and -690 by quantitative PCR in primary Sertoli cells. Bioinformatic analysis of potential targets of hormonally-suppressed miRNAs identified genes associated with Focal adhesions (54 genes, P = –ln(17.97)) and the Regulation of the actin cytoskeleton (52 genes, P = –ln(10.16)), processes known to be intimately associated with adhesion of spermatids to Sertoli cells(2, 3). Furthermore, this analysis identified numerous components of the testicular tubulobulbar complex (TBC) as being targets of hormonally sensitive miRNAs. The TBC is a podosome-like structure between Sertoli and adjacent spermatids in the testis, which internalises intact inter-cellular junctions by endocytotic mechanisms prior to spermiation(4). We then demonstrate the hormonal regulation of predicted miRNA target proteins, and validate novel inhibitory miRNA interactions with Pten, nWASP, Eps15 and Picalm by luciferase knockdown in vitro. We hypothesise that hormonally suppressed miRNAs inhibit TBC function, and subsequently, endocytosis of intercellular junctions. In conclusion, we have demonstrated that hormonal suppression in the testis stimulates the expression of a subset of Sertoli cell miRNAs that are likely regulators of cell adhesion protein networks involved in spermiation. (1) Saito K, O’Donnell L, McLachlan RI, Robertson DM 2000 Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats. Endocrinology 141: 2779–2.(2) O’Donnell L, Stanton PG, Bartles JR, Robertson DM 2000 Sertoli cell ectoplasmic specializations in the seminiferous epithelium of the testosterone-suppressed adult rat. Biol Reprod 63: 99–108.(3) Beardsley A, Robertson DM, O’Donnell L 2006 A complex containing alpha6beta1-integrin and phosphorylated focal adhesion kinase between Sertoli cells and elongated spermatids during spermatid release from the seminiferous epithelium. J Endocrinol 190(3): 759–70.(4) Young JS, Guttman JA, Vaid KS, Vogl AW 2009 Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 80: 162–74.


2020 ◽  
Vol 9 (1) ◽  
pp. 266 ◽  
Author(s):  
Marsida Hutka ◽  
Lee B. Smith ◽  
Ellen Goossens ◽  
W. Hamish B. Wallace ◽  
Jan-Bernd Stukenborg ◽  
...  

The future fertility of prepubertal boys with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Successful spermatogenesis has not been achieved following the xenotransplantation of prepubertal human testis tissue, which is likely due to the failure of somatic cell maturation and function. We used a validated xenograft model to identify the factors required for Leydig and Sertoli cell development and function in immature human testis. Importantly, we compared the maturation status of Sertoli cells in xenografts with that of human testis tissues (n = 9, 1 year-adult). Human fetal testis (n = 6; 14–21 gestational weeks) tissue, which models many aspects of prepubertal testicular development, was transplanted subcutaneously into castrated immunocompromised mice for ~12 months. The mice received exogenous human chorionic gonadotropin (hCG; 20IU, 3×/week). In xenografts exposed continuously to hCG, we demonstrate the maintenance of Leydig cell steroidogenesis, the acquisition of features of Sertoli cell maturation (androgen receptor, lumen development), and the formation of the blood–testis barrier (connexin 43), none of which were present prior to the transplantation or in xenografts in which hCG was withdrawn after 7 months. These studies provide evidence that hCG plays a role in Sertoli cell maturation, which is relevant for future investigations, helping them generate functional gametes from immature testis tissue for clinical application.


1991 ◽  
Vol 129 (1) ◽  
pp. 35-NP ◽  
Author(s):  
S. Francavilla ◽  
G. Cordeschi ◽  
G. Properzi ◽  
L. Di Cicco ◽  
E. A. Jannini ◽  
...  

ABSTRACT The relationship between thyroid function and testicular development in the rat was investigated. Hypothyroidism was induced during fetal or postnatal life by adding methimazole (MMI) to the drinking water of pregnant or lactating mothers. A group of newborn rats was treated with MMI and i.p. injections of l-tri-iodothyronine (l-T3). Hypothyroidism was shown by the reduced serum levels of total T3 and of total thyroxine (T4) in pregnant mothers and in pubertal rats. Testes were studied using light microscopy at 18 and 21 days post coitum or during puberty (21, 35 and 50 days after birth); serum levels of gonadotrophins were also evaluated in pubertal rats. Hypothyroidism had no effect on testicular development during fetal life and when induced in newborn rats it was associated at puberty with reduced serum levels of FSH and LH and with delayed maturation of the testis compared with control rats. The delay in maturation consisted of a reduction in the diameter of seminiferous tubules, and a reduction in the number of germ cells per tubule; this was associated with increased degeneration and arrested maturation of germ cells. In addition, Sertoli cells demonstrated retarded development, as indicated by a delay in the appearance of cytoplasmic lipids and in the development of a tubule lumen. Hormonal and morphological abnormalities were absent in rats treated with MMI plus l-T3. In conclusion, hypothyroidism occurring soon after birth caused reduced levels of gonadotrophins in the serum and a delay in pubertal spermatogenesis, possibly due to retarded differentiation of the Sertoli cells. Journal of Endocrinology (1991) 129, 35–42


Reproduction ◽  
2016 ◽  
Vol 152 (2) ◽  
pp. R31-R40 ◽  
Author(s):  
Hong Wang ◽  
Liping Wen ◽  
Qingqing Yuan ◽  
Min Sun ◽  
Minghui Niu ◽  
...  

Within the seminiferous tubules there are two major cell types, namely male germ cells and Sertoli cells. Recent studies have demonstrated that male germ cells and Sertoli cells can have significant applications in treating male infertility and other diseases. However, primary male germ cells are hard to proliferatein vitroand the number of spermatogonial stem cells is scarce. Therefore, methods that promote the expansion of these cell populations are essential for their use from the bench to the bed side. Notably, a number of cell lines for rodent spermatogonia, spermatocytes and Sertoli cells have been developed, and significantly we have successfully established a human spermatogonial stem cell line with an unlimited proliferation potential and no tumor formation. This newly developed cell line could provide an abundant source of cells for uncovering molecular mechanisms underlying human spermatogenesis and for their utilization in the field of reproductive and regenerative medicine. In this review, we discuss the methods for establishing spermatogonial, spermatocyte and Sertoli cell lines using various kinds of approaches, including spontaneity, transgenic animals with oncogenes, simian virus 40 (SV40) large T antigen, the gene coding for a temperature-sensitive mutant ofp53, telomerase reverse gene (Tert), and the specific promoter-based selection strategy. We further highlight the essential applications of these cell lines in basic research and translation medicine.


2017 ◽  
Vol 29 (8) ◽  
pp. 1635 ◽  
Author(s):  
A. Dance ◽  
J. Kastelic ◽  
J. Thundathil

Beef and dairy bull calves fed a low-nutrition diet during early life had decreased concentrations of circulating insulin-like growth factor I (IGF-I), delayed increases in testosterone, smaller testes and delayed puberty compared with those fed high-nutrition diets. Although IGF-1 has important roles in Sertoli cell function in rats and mice, this has not been well documented in bulls. The objectives of this study were to: (1) isolate Sertoli cells from bull calves at 8 weeks of age, (2) culture them in vitro and (3) determine the effects of IGF-I, FSH and a combination of both hormones on cell proliferation. For Sertoli cell isolation, minced testicular tissues were treated with collagenase followed by trypsin and hyaluronidase to digest seminiferous tubules and release Sertoli cells. In this study, Sertoli cells were successfully isolated from 8-week-old Holstein bull calves (n = 4) and these cells were cultured for up to 8 days. A combination of IGF-I and FSH increased proliferation (~18%) and therefore cell number (1.5-fold) of prepubertal bovine Sertoli cells in culture, providing clear evidence that IGF-I has a similar role in bovine Sertoli cells as reported in rodents.


1999 ◽  
Vol 145 (5) ◽  
pp. 1027-1038 ◽  
Author(s):  
Antonella Tripiciano ◽  
Carmelina Peluso ◽  
Anna Rita Morena ◽  
Fioretta Palombi ◽  
Mario Stefanini ◽  
...  

The potent smooth muscle agonist endothelin-1 (ET-1) is involved in the local control of seminiferous tubule contractility, which results in the forward propulsion of tubular fluid and spermatozoa, through its action on peritubular myoid cells. ET-1, known to be produced in the seminiferous epithelium by Sertoli cells, is derived from the inactive intermediate big endothelin-1 (big ET-1) through a specific cleavage operated by the endothelin-converting enzyme (ECE), a membrane-bound metalloprotease with ectoenzymatic activity. The data presented suggest that the timing of seminiferous tubule contractility is controlled locally by the cyclic interplay between different cell types. We have studied the expression of ECE by Sertoli cells and used myoid cell cultures and seminiferous tubule explants to monitor the biological activity of the enzymatic reaction product. Northern blot analysis showed that ECE-1 (and not ECE-2) is specifically expressed in Sertoli cells; competitive enzyme immunoassay of ET production showed that Sertoli cell monolayers are capable of cleaving big ET-1, an activity inhibited by the ECE inhibitor phosphoramidon. Microfluorimetric analysis of intracellular calcium mobilization in single cells showed that myoid cells do not respond to big endothelin, nor to Sertoli cell plain medium, but to the medium conditioned by Sertoli cells in the presence of big ET-1, resulting in cell contraction and desensitization to further ET-1 stimulation; in situ hybridization analysis shows regional differences in ECE expression, suggesting that pulsatile production of endothelin by Sertoli cells (at specific “stages” of the seminiferous epithelium) may regulate the cyclicity of tubular contraction; when viewed in a scanning electron microscope, segments of seminiferous tubules containing the specific stages characterized by high expression of ECE were observed to contract in response to big ET-1, whereas stages with low ECE expression remained virtually unaffected. These data indicate that endothelin-mediated spatiotemporal control of rhythmic tubular contractility might be operated by Sertoli cells through the cyclic expression of ECE-1, which is, in turn, dependent upon the timing of spermatogenesis.


2005 ◽  
Vol 65 (2) ◽  
pp. 241-249 ◽  
Author(s):  
C. Cruz-Landim ◽  
F. C. Abdalla ◽  
M. A. Cruz-Höfling

An investigation of the histological and ultrastructural changes of Sertoli cells during the male reproductive cycle in Piaractus mesopotamicus was made. The results showed that the Sertoli cell development is closely related with germ cell maturation. Therefore, these cells may have some role in germ cell maturation during the reproductive cycle of this species, whether in forming a tissue framework for the developing spermatogenic cysts, aiding in testes reorganization for a new reproductive cycle, in addition to other possible functions discussed in the text.


Sign in / Sign up

Export Citation Format

Share Document