scholarly journals Establishment and applications of male germ cell and Sertoli cell lines

Reproduction ◽  
2016 ◽  
Vol 152 (2) ◽  
pp. R31-R40 ◽  
Author(s):  
Hong Wang ◽  
Liping Wen ◽  
Qingqing Yuan ◽  
Min Sun ◽  
Minghui Niu ◽  
...  

Within the seminiferous tubules there are two major cell types, namely male germ cells and Sertoli cells. Recent studies have demonstrated that male germ cells and Sertoli cells can have significant applications in treating male infertility and other diseases. However, primary male germ cells are hard to proliferatein vitroand the number of spermatogonial stem cells is scarce. Therefore, methods that promote the expansion of these cell populations are essential for their use from the bench to the bed side. Notably, a number of cell lines for rodent spermatogonia, spermatocytes and Sertoli cells have been developed, and significantly we have successfully established a human spermatogonial stem cell line with an unlimited proliferation potential and no tumor formation. This newly developed cell line could provide an abundant source of cells for uncovering molecular mechanisms underlying human spermatogenesis and for their utilization in the field of reproductive and regenerative medicine. In this review, we discuss the methods for establishing spermatogonial, spermatocyte and Sertoli cell lines using various kinds of approaches, including spontaneity, transgenic animals with oncogenes, simian virus 40 (SV40) large T antigen, the gene coding for a temperature-sensitive mutant ofp53, telomerase reverse gene (Tert), and the specific promoter-based selection strategy. We further highlight the essential applications of these cell lines in basic research and translation medicine.

Development ◽  
1994 ◽  
Vol 120 (7) ◽  
pp. 1759-1766 ◽  
Author(s):  
K. Yomogida ◽  
H. Ohtani ◽  
H. Harigae ◽  
E. Ito ◽  
Y. Nishimune ◽  
...  

GATA-1 is an essential factor for the transcriptional activation of erythroid-specific genes, and is also abundantly expressed in a discrete subset of cells bordering the seminiferous epithelium in tubules of the murine testis. In examining normal and germ-line defective mutant mice, we show here that GATA-1 is expressed only in the Sertoli cell lineage in mouse testis. GATA-1 expression in Sertoli cells is induced concomitantly with the first wave of spermatogenesis, and GATA-1-positive cells are uniformly distributed among all tubules during prepubertal testis development. However, the number of GATA-1-positive cells declines thereafter and were found only in the peripheral zone of seminiferous tubules in stages VII, VIII and IX of spermatogenesis in the adult mouse testis. In contrast, virtually every Sertoli cell in mutant W/Wv, jsd/jsd or cryptorchid mice (all of which lack significant numbers of germ cells) expresses GATA-1, thus showing that the expression of this transcription factor is negatively controlled by the maturing germ cells. These observations suggest that transcription factor GATA-1 is a developmental stage- and spermatogenic cycle-specific regulator of gene expression in Sertoli cells.


2003 ◽  
Vol 15 (6) ◽  
pp. 323 ◽  
Author(s):  
David Pei-Cheng Lin ◽  
Ming-Yu Chang ◽  
Bo-Yie Chen ◽  
Han-Hsin Chang

Research using stem cells has several applications in basic biology and clinical medicine. Recent advances in the establishment of male germ line stem cells provided researchers with the ability to identify, isolate, maintain, expand and differentiate the spermatogonia, the primitive male germ cells, as cell lines under in vitro conditions. The ability to culture and manipulate stem cell lines from male germ cells has gradually facilitated research into spermatogenesis and male infertility, to an extent beyond that facilitated by the use of somatic stem cells. After the introduction of exogenous genes, the spermatogonial cells can be transplanted into the seminiferous tubules of recipients, where the transplanted cells can contribute to the offspring. The present review concentrates on the origin, life cycle and establishment of stem cell lines from male germ cells, as well as the current status of transplantation techniques and the application of spermatogonial stem cell lines.


2007 ◽  
Vol 27 (6) ◽  
pp. 403-411 ◽  
Author(s):  
Chin-kai Chuang ◽  
Kun-Hsiung Lee ◽  
Chio-Tin Fan ◽  
Yu-Show Su

Sertoli cells are regulated by follicular stimulating hormone (FSH) and testosterone secreted by the pituitary gland and Leydig cells, respectively. However, the expression of the FSH receptor and androgen receptor were undetectable in both primary cultured Sertoli cells and Sertoli cell lines immortalized by SV40 large T antigen. Two Sertoli cell lines, B6Sc-2 and B6Sc-3, were established from the testis of 19-day-old C57BL/6 mice testis by immortalization with human telomere reverse transcriptase. These Sertoli cell lines expressed FSH receptors and the total phosphoprotein patterns were converted after FSH treatment. Additionally, immunological methods demonstrated that these cell lines expressed characteristic Sertoli cell proteins, such as tyrosine-tubulin, vimentin and stem cell factor (SCF). Reverse transcription-polymerase chain reaction (RT-PCR) also indicates that they express Sertoli specific mRNAs, such as Amh, claudin11 and ZO-1. The expression of the androgen receptor in both B6Sc-2 and B6Sc-3 cells could be induced by TNF-α treatment. The present results indicate that these Sertoli cell lines are more native than others and may thus provide useful tools for in vitro studies.


Author(s):  
Kazusa Higuch ◽  
Takafumi Matsumura ◽  
Haruhiko Akiyama ◽  
Yoshiakira Kanai ◽  
Takehiko Ogawa ◽  
...  

Abstract Spermatogenesis takes place in the seminiferous tubules, starting from the spermatogonial stem cell and maturing into sperm through multiple stages of cell differentiation. Sertoli cells, the main somatic cell constituting the seminiferous tubule, are in close contact with every germ cell and play pivotal roles in the progression of spermatogenesis. In this study, we developed an in vitro Sertoli cell replacement method by combining an organ culture technique and a toxin receptor-mediated cell knockout (Treck) system. We used Amh- diphtheria toxin receptor (DTR) transgenic mice, whose Sertoli cells specifically express human DTR, which renders them sensitive to diphtheria toxin (DT). An immature Amh-DTR testis was transplanted with donor testis cells followed by culturing in a medium containing DT. This procedure successfully replaced the original Sertoli cells with the transplanted Sertoli cells, and spermatogenesis originating from resident germ cells was confirmed. In addition, Sertoli cells in the mouse testis tissues were replaced by transplanted rat Sertoli cells within culture conditions, without requiring immunosuppressive treatments. This method works as a functional assay system, making it possible to evaluate any cells that might function as Sertoli cells. It would also be possible to investigate interactions between Sertoli and germ cells more closely, providing a new platform for the study of spermatogenesis and its impairments.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1379
Author(s):  
Xiaorui Fan ◽  
Yihui Liu ◽  
Meishan Yue ◽  
Weidong Yue ◽  
Gaoya Ren ◽  
...  

Spontaneous unilateral cryptorchid boars have one testis in the abdomen or inguinal canal, causing its temperature to be at or near the body temperature, which impairs spermatogenesis, although the histomorphometry and molecular mechanisms underlying this process remain unclear. The aim of the present study was to determine the histomorphometry, proliferation, apoptosis, and autophagy alterations in spermatogonia and Sertoli cells in unilateral cryptorchid, scrotal (contrascrotal), and preweaning piglet (preweaning) testes. Histomorphometrical analysis of cryptorchid testes showed that the seminiferous tubules contained only Sertoli cells and a few spermatogonia, but did not contain post-meiotic germ cells. The number of spermatogonia markedly decreased, and the number of Sertoli cells did not change remarkably in cryptorchid testes. TUNEL assay results showed that apoptosis signals were predominantly observed in spermatogonia. In cryptorchid and contrascrotal testes, proliferating cell nuclear antigen (PCNA) and LC3 were located in spermatogonia. The number of PCNA-positive, TUNEL-positive, and LC3-positive germ cells was low, and the protein and mRNA levels of PCNA and LC3 were significantly decreased in cryptorchid testes. Taken together, the number of Sertoli cells did not change remarkably, whereas the number of germ cells decreased in the cryptorchid testes, compared with that in the contrascrotal testes. Insufficient proliferation, excessive apoptosis, and autophagy were involved in the regulation of the decrease in spermatogonia in cryptorchid boar testes.


1997 ◽  
Vol 326 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Kathy NELSON ◽  
Julie BIELICKI ◽  
Donald S. ANSON

Multiple sulphatase deficiency (MSD) is a rare genetic defect that causes a simultaneous deficiency of all known sulphatases. All available evidence suggests that the deficient gene product is normally responsible for the post-translational modification of a conserved cysteine residue to 2-amino-3-oxopropionic acid and that this modification is necessary for sulphatase activity. MSD often has an enzymically mild phenotype, with significant levels of residual sulphatase activity being detectable. Here we identify an MSD cell line in which the residual activity of the sulphatases assayed was generally very low. To characterize the phenotype of this cell line further, immortalized lines were established after transformation with simian virus 40 (SV40) T antigen. Immortalized cell lines representing normal and MSD phenotypes were then transduced with a retroviral vector carrying the gene encoding human N-acetylgalactosamine-4-sulphatase. Analysis of N-acetylgalactosamine-4-sulphatase protein synthesis and enzyme activity showed that transduced cell lines expressed large amounts of enzyme and that the specific activity of this enzyme was approx. 0.5–1.5% of normal, confirming that this cell line defines a severe phenotype for MSD. N-Acetylgalactosamine-4-sulphatase purified from a transduced MSD cell line seemed normal on denaturing PAGE. Kinetic analysis of the purified enzyme suggests that the residual activity is due to small amounts of normal enzyme rather than unmodified enzyme with low levels of residual activity. These cell lines and the availability of large amounts of inactive N-acetylgalactosamine-4-sulphatase from MSD cells should facilitate the further study of this disorder.


2020 ◽  
Vol 103 (4) ◽  
pp. 880-891
Author(s):  
Phillip A Thomas ◽  
Eric D Schafler ◽  
Sophie E Ruff ◽  
Maud Voisin ◽  
Susan Ha ◽  
...  

Abstract Spermatogenesis is a complex process that establishes male fertility and involves proper communication between the germline (spermatozoa) and the somatic tissue (Sertoli cells). Many factors that are important for spermatozoa production are also required for Sertoli cell function. Recently, we showed that the transcriptional cofactor ubiquitously expressed transcript (UXT) encodes a protein that is essential in germ cells for spermatogenesis and fertility. However, the role of UXT within Sertoli cells and how it affects Sertoli cell function was still unclear. Here we describe a novel role for UXT in the Sertoli cell’s ability to support spermatogenesis. We find that the conditional deletion of Uxt in Sertoli cells results in smaller testis size and weight, which coincided with a loss of germ cells in a subset of seminiferous tubules. In addition, the deletion of Uxt has no impact on Sertoli cell abundance or maturity, as they express markers of mature Sertoli cells. Gene expression analysis reveals that the deletion of Uxt in Sertoli cells reduces the transcription of genes involved in the tight junctions of the blood–testis barrier (BTB). Furthermore, tracer experiments and electron microscopy reveal that the BTB is permeable in UXT KO animals. These findings broaden our understanding of UXT’s role in Sertoli cells and its contribution to the structural integrity of the BTB.


2020 ◽  
Vol 21 (12) ◽  
pp. 4358
Author(s):  
Shuai Wang ◽  
Pengxiang Wang ◽  
Dongli Liang ◽  
Yuan Wang

Sertoli cells are somatic supporting cells in spermatogenic niche and play critical roles in germ cell development, but it is yet to be understood how epigenetic modifiers regulate Sertoli cell development and contribution to spermatogenesis. BRG1 (Brahma related gene 1) is a catalytic subunit of the mammalian SWI/SNF chromatin remodeling complex and participates in transcriptional regulation. The present study aimed to define the functions of BRG1 in mouse Sertoli cells during mouse spermatogenesis. We found that BRG1 protein was localized in the nuclei of both Sertoli cells and germ cells in seminiferous tubules. We further examined the requirement of BRG1 in Sertoli cell development using a Brg1 conditional knockout mouse model and two Amh-Cre mouse strains to specifically delete Brg1 gene from Sertoli cells. We found that the Amh-Cre mice from Jackson Laboratory had inefficient recombinase activities in Sertoli cells, while the other Amh-Cre strain from the European Mouse Mutant Archive achieved complete Brg1 deletion in Sertoli cells. Nevertheless, the conditional knockout of Brg1 from Sertoli cells by neither of Amh-Cre strains led to any detectable abnormalities in the development of either Sertoli cells or germ cells, suggesting that BRG1-SWI/SNF complex is dispensable to the functions of Sertoli cells in spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document