scholarly journals Effect of the number of passages of fetal and adult fibroblasts on nuclear remodelling and first embryonic division in reconstructed horse oocytes after nuclear transfer

Reproduction ◽  
2003 ◽  
pp. 535-542 ◽  
Author(s):  
X Li ◽  
JL Tremoleda ◽  
WR Allen

The effects of repeated passage in vitro of fetal fibroblast cells (FFC) and adult fibroblast cells (AFC) on nuclear remodelling and first embryonic division when used to reconstruct horse oocytes, and the reasons for the developmental block in progression to the two-cell stage were investigated. A total of 463 metaphase II oocytes produced 427 fibroblast-cytoplasm couplets after nuclear transfer, which finally resulted in 319 reconstructed oocytes. With increasing numbers of passages, the rates of nuclear remodelling decreased in both types of donor cell; about half of the fused donor cell nuclei showed the S-G2-prometaphase stages of the first embryonic division 18-20 h after cell-fusion treatment, irrespective of the number of donor cell passages (FFC: 49%; AFC: 53%). The rates of first embryonic division in the reconstructed oocytes fell with increasing age of the donor cells (FFC: 32%-26%-23%; AFC: 27%-23%-24%) and these rates were significantly lower than those obtained from metaphase II oocytes activated parthenogenetically (79%, P < 0.05). Microscopic analysis of the organization of the first embryonic division in the developmentally blocked oocytes reconstructed with either FFC or AFC showed that most of these (FFC: 78%; AFC: 92%) could not form the mitotic spindle and the metaphase plate of chromosomes. These findings indicate that either fetal or adult fibroblasts that have undergone relatively few passages in vitro are most suitable as donors. However, both types of cell have lower potential to restart first embryonic development after nuclear transfer than do the equivalent cells in other species. Improvement in the rate of donor cell nuclear progression from S-G2-prometaphase to beyond the metaphase stage, and the normal organization of first embryonic development in reconstructed horse oocytes, would seem to be the key to the production of cloned embryos in this species.

2007 ◽  
Vol 19 (1) ◽  
pp. 142
Author(s):  
K. Inoue ◽  
N. Ogonuki ◽  
H. Miki ◽  
S. Noda ◽  
S. Inoue ◽  
...  

Although cloning animals by somatic cell nuclear transfer is generally an inefficient process, use of appropriate donor cell types may improve the cloning outcome significantly. Among the donor cells tested so far, mouse embryonic stem cells have given the best efficiency in terms of the development of reconstructed embryos into offspring. In this study, we examined whether 2 in vitro-produced pluripotent stem cells—neural stem cells (NSCs) and mesenchymal stem cells (MSCs)—could be better nuclear donors than other differentiated cells. Embryos were reconstructed by transfer of nuclei from NSCs or MSCs with full potential for differentiation in vitro. Most (76%) of the 2-cell NCS embryos developed to the 4-cell stage; 43% implanted and 1.6% developed to term after transfer to pseudopregnant recipients. These rates were very similar to those of embryos cloned from fibroblast cell nuclei. Interestingly, in the patterns of zygotic gene expression, NSC embryos were more similar to in vitro-fertilized embryos than fibroblast cloned embryos. By contrast, embryos reconstructed using MSC nuclei showed lower developmental ability and no implantation was obtained after embryo transfer. Chromosomal analysis of the donor MSCs revealed very high frequencies of monosomy and trisomy, which might have caused the very poor post-implantation development of embryos following nuclear transfer. Thus, in vitro-produced pluripotent cells can serve as donors of nuclei for cloning mice, but may be prone to chromosomal aberrations leading to a high rate of cloned embryo death.


Zygote ◽  
2008 ◽  
Vol 16 (3) ◽  
pp. 223-227 ◽  
Author(s):  
Gang Zhang ◽  
Qing-Yuan Sun ◽  
Da-Yuan Chen

SummaryIn this study, C57BL/6 adult male mouse ear fibroblast cells and Kunming mouse M2 oocytes were used as donors and recipients, respectively, to investigate the effect of passage number on donor cells and electrofusion times on the in vitro development of nuclear transfer (NT) embryos. The results demonstrated firstly that when the ear fibroblast cells from either 2–4, 5–7 or 8–10 passages were used as donors, respectively, to produce NT embryos, the number of passages undergone by the donor cells had no significant effect on the in vitro development of NT embryos. The developmental rates for morula/blastocyst were 15.2, 13.3 and 14.0%, respectively, which were not significantly difference (p > 0.05). Secondly, when the NT embryos were electrofused, there was no significant difference between the fusion ratio for the first electrofusion and the second electrofusion (p > 0.05). The developmental rates of the 2-cell and 4-cell stages that had undergone only one electrofusion, however, were significantly higher than those that had had two electrofusions (65.7% compared with 18.4% and 36.4% compared with 6.1%; p < 0.01), furthermore the NT embryos with two electrofusions could not develop beyond the 4-cell stage. This study suggests that this protocol might be an alternative method for mouse somatic cloning, even though electrofusion can exert negative effects on the development of NT embryos.


2011 ◽  
Vol 23 (1) ◽  
pp. 128
Author(s):  
J. Lee ◽  
J. Park ◽  
Y. Chun ◽  
W. Lee ◽  
K. Song

Study for equine somatic cell nuclear transfer (SCNT) is an attractive field for research, but it has not been a major field of study because it is hard to obtain a sufficient number of ovaries and it takes a lot of time and effort for the recovery of oocytes matured in vivo by ovum pickup. It was reported that the bovine cytoplast could support the remodelling of equine donor cells (Zhou et al. 2007 Reprod. Domest. Anim. 42, 243–247). The objectives of this study are 1) to monitor the early events of equine SCNT by interspecies SCNT (isSCNT) between bovine cytoplast and equine donor cell, and 2) to investigate the developmental competence of isSCNT embryos. Bovine oocytes were recovered from the follicles of slaughtered ovaries, and matured in TCM-199 supplemented with 10 mU mL–1 FSH, 50 ng mL–1 EGF, and 10% FBS at 39°C under 5% CO2 in air for 22 h. Fibroblasts derived from bovine or equine skin tissues were synchronized at G0/G1 stage by contact inhibition for 72 h. After IVM, oocytes with polar body were enucleated and electrically fused with equine or bovine skin fibroblasts (1.0 kV cm–1, 20 μs, 2 pulses). Fused couplets were activated with 5 μM ionomycin for 4 min followed by 5 h culture in 10 μg mL–1 cycloheximide (CHX) and/or 2 mM 6-DMAP, and cultured in modified synthetic oviduct fluid (mSOF) at 39°C under 5% CO2, 5% O2, and 90% N2 for 7 days. All analyses were performed using SAS (version 9.1; SAS Institute, Cary, NC, USA). The cleavage rate of isSCNT embryos derived from equine cell was not different (252/323, 78.7%; P = 0.94) from that of SCNT embryos derived from bovine cell (230/297, 79.2%). However, the rate of isSCNT embryos developed to over 8-cell stage was lower (3.3%; P < 0.0001) than that of bovine SCNT embryos (39.4%), and total cell number of isSCNT embryos developed to over 8-cell stage was lower (17.5, n = 12; P < 0.0001) than that (80.8, n = 110) of bovine SCNT embryos. Also, the rate of blastocyst formation of isSCNT embryos (0/323; 0.0%) was lower (P < 0.0001) than that of bovine SCNT embryos (83/297; 29.3%). Meanwhile, reconstructed oocytes for isSCNT were fixed at 8 h after activation to investigate the formation of pseudo-pronucleus (PPN) after post-activation treatment with CHX or CHX+6-DMAP. The ratio of oocytes with single PPN after treatment with CHX+6-DMAP (26/35; 74.3%) was not different (P = 0.63) from that of oocytes treated with CHX (24/36; 68.1%). Although isSCNT embryos derived from bovine cytoplast and equine donor cell could not develop to more than the 16-cell stage, it is believed that the results of this isSCNT study could be used for the preliminary data regarding the reprogramming of donor cell in equine SCNT.


2012 ◽  
Vol 24 (1) ◽  
pp. 118
Author(s):  
A. Gambini ◽  
J. Jarazo ◽  
A. De Stefano ◽  
F. Karlanian ◽  
D. Salamone

The low number of horse slaughterhouses is one of the reasons for the limited availability of horse oocytes for research in cloning. The aim of our study was to assess the capability of equine, bovine, porcine, or feline ooplast to produce cloned embryos when equine cells are used as donor nuclei and to evaluate if embryo aggregation improves their development. Oocytes from mentioned species were collected from ovaries derived from slaughterhouses, except for cat ovaries that were obtained from ovariectomized queens. Oocytes were matured in TCM199 supplemented following standard protocols for each species. After maturation, cumulus and zona pellucida were removed. Enucleation was performed by aspiration of the metaphase plate under ultraviolet light. Donor cell and ooplast were attached by phytohemagglutinin treatment and then electrofused. Activation protocols were ionomycin for 4 min, except for porcine, which were electrically activated, followed by culture in 1.9 mM 6-DMAP for bovine, feline and porcine, except for equine: 1 mM 6-DMAP with 5 mg mL–1 of cycloheximide. Reconstructed embryos (RE) were cultured in SOF in the well of well system in 2 different groups: only one RE per well (1X) and three RE per well (3X, aggregated embryos, AE). Blastocysts derived from homospecific clones were transferred to synchronized mares. Cleavage and maximum development stage achieved of all experimental groups were assessed. In vitro development was compared using the chi-square test. In group 1X, a total of 64, 49, 38 and 145 RE were performed for porcine, bovine, feline and equine, respectively and in group 3X, 88, 48, 48 and 195 RE. Cleavage of cloned embryos ranged from 67 to 87%. Aggregated of homospecific equine clones showed the highest blastocyst rates (1X: 5.5%, 3X: 34%) and after embryo transfer (4 recipients for each group), an ongoing pregnancy (day 300, at the time of submission) was only achieved with aggregated embryo confirming the positive effect of embryo aggregation in these clones. The stages with higher developmental arrest of heterospecific nonaggregated embryos were 2 to 4 cells for porcine ooplast (23/64, 36%) and 4 to 8 cells for bovine and feline ooplast (37/49, 75% and 18/38, 47%, respectively). Blastocyst stage was only reached using feline ooplast (group I: 2/38, 5.26% and group II: 2/16, 12.5%). Heterospecific aggregated clones were able to achieve 16-cell stage, showing statistic differences compared with group 1X. As we reported previously, embryo aggregation shows benefits for homospecific equine clones, although more studies are needed to clarify if aggregation of heterospecific clones has the same effect. All heterospecific ooplasm was able to support embryo development. The stage of major developmental arrests was similar to embryonic genomic activation stage. Our results suggest that cat oocyte seems to be the best receptor to support equine cloned embryo development.


Zygote ◽  
2018 ◽  
Vol 26 (6) ◽  
pp. 449-456 ◽  
Author(s):  
Xin Ma ◽  
Sheng Zhang ◽  
Meiling Zhang ◽  
Yiran Zhu ◽  
Panpan Ma ◽  
...  

SummaryTRIM28/KAP1/TIF1β was identified as a universal transcriptional co-repressor and is critical for regulating post-fertilization methylation reprogramming in preimplantation embryos. In this study, three siRNAs (si647, si742, and si1153) were designed to target the TRIM28 mRNA sequence. After transfection of the mixture of the three siRNA (siMix) into bovine fibroblast cells, the most effective one for TRIM28 knockdown was selected. By injecting RNAi directed against TRIM28 mRNA, we found that TRIM28 knockdown in oocytes had the most effect on the H19 gene, in which differentially methylated region (DMR) methylation was almost completely absent at the 2-cell stage (1.4%), while control embryos showed 74% methylation. In addition, global H3K9me3 levels at the 2-cell stage were significantly higher in the in vitro fertilization (IVF) group than in the TRIM28 knockdown group (P<0.05). We further show that TRIM28 is highly expressed during oocyte maturation and reaches peak levels at the 2-cell stage. In contrast, at this stage, TRIM28 expression in somatic cell nuclear transfer (SCNT) embryos decreased significantly (P<0.05), suggesting that Trim28 transcripts are lost during SCNT. TRIM28 is required for the maintenance of methylation imprints in bovine preimplantation embryos, and the loss of TRIM28 during SCNT may contribute to the unfaithful maintenance of imprints in cloned embryos.


1995 ◽  
Vol 7 (5) ◽  
pp. 1217 ◽  
Author(s):  
F Delhaise ◽  
FJ Ectors ◽  
Roover R de ◽  
F Ectors ◽  
F Dessy

The developmental potential of nuclei of bovine gonial cells was investigated by nuclear transfer. Gonial cells were collected from male fetuses at about 175 days post coitum (p.c.). They were fused with enucleated oocytes; reconstituted embryos were cultured in vitro for 7 days. Embryos reaching the compacted morula or blastocyst stage were either fixed for cell counting or transferred into recipients. Out of 115 oocyte-gonia fusions, 101 (87.8%) gave rise to cleaved embryos at Day 3 and 26 (22.6%) had reached the 8-cell stage. At Day 7, 1 (1%) developed to the morula stage and 5 (4%) reached the blastocyst stage. Three blastocysts were fixed and showed normal cell numbers (135; 90; 76 cells). Three blastocysts and one morula were transferred in four recipients; two recipients were pregnant at Day 21 but only one was positive at Day 35 p.c.; this last one aborted around Day 40 p.c. No conceptus was collected. These results indicate that gonial cell nuclei can be partially reprogrammed; they are able to develop into blastocysts and to initiate gestation. However, more experiments will be necessary to prove the nuclear totipotency of bovine gonial cells.


2011 ◽  
Vol 23 (1) ◽  
pp. 244
Author(s):  
R. Dutta ◽  
D. Malakar ◽  
K. Khate ◽  
J. Akshay

The handmade cloning technique has been a relatively recent addition in the field of nuclear transfer. In the present study, attempts were made to efficiently derive stem cells from handmade cloned (HMC) embryos in goat using adult fibroblast cells, embryonic stem (ES) cells, and lymphocytes as donor cells, and to characterise the derived putative nuclear transfer ES (ntES) cells for their stemness. Efficiency of the donor cells for nuclear transfer was also compared, and an overall cleavage and morula formation rates of 62.44 ± 3.9% and 35.30 ± 3.86%, 75.45 ± 3.92% and 45.84 ± 3.86%, and 56.38 ± 3.92% and 29.09 ± 3.86% were obtained from adult fibroblasts, ES cells, and lymphocytes, respectively. A significant difference was found between ES cells and the other 2 donor cells in terms of cleavage and morula formation. However, no such difference existed between fibroblasts and lymphocyte donor cells. Stem cell colonies were successfully derived from HMC embryos obtained from all 3 different donor cells. The rate of primary colony formation was 61.66 ± 4.62% for fibroblast-donor-cell-derived embryos. This rate was 59.91 ± 4.62% for ES-donor-cell-derived embryos and 62.49 ± 4.62% for lymphocyte-donor-cell-derived embryos. The putative ntES colonies were positively characterised for TRA-1-60, TRA-1-81, SSEA-1, SSEA-4, OCT-4, SOX-2, and Nanog by immunocytochemistry and RT-PCR. Results indicated that ES cells had better efficiency as donor cells in cloned embryo production than did adult fibroblasts and lymphocytes. The finding also suggested that terminally differentiated cell-like lymphocytes can also be reprogrammed. Moreover, there was no difference between the different donor-cell-derived HMC embryos in terms of ntES cell derivation. The study has established an efficient protocol for putative ntES cell derivation from HMC embryos. This could be of substantial significance because patient-specific ntES cells have proven therapeutic significance. The authors acknowledge N.D.R.I for the financial and infrastructural assistance.


2007 ◽  
Vol 19 (1) ◽  
pp. 134
Author(s):  
P. Q. Cong ◽  
E. S. Song ◽  
E. S. Kim ◽  
Z. H. Li ◽  
Y. J. Yi ◽  
...  

Pigs have become increasingly important in the field of biomedical research, and interest has grown in the use of transgenic cloned pigs as potential xenograft donors. The present study were carried out to investigate the effects of intensity of DC pulse, number of DC pulses, and equilibration before fusion/activation on developmental ability of porcine embryos derived from nuclear transfer. Porcine cumulus-oocyte complexes (COCs) were cultured in modified TCM-199 (mTCM-199) medium for 44 h at 38.5�C, 5% CO2 in air. After in vitro maturation (IVM), metaphase II oocytes were selected for enucleation. Porcine fetal fibroblasts were obtained from a porcine fetus on Day 35 of gestation as donor cells. Oocytes were enucleated by removing, with a micropipette, the first polar body along with adjacent cytoplasm containing the metaphase plate; then a donor cell was injected in contact with the cytoplasm of each oocyte. In experiment 1, several different fusion/activation intensities (two DC pulses of 0.4, 0.8, 1.2, 1.6, and 2.0 kV cm-1 for 30 �s) were carried out to investigate the effect on the development of nuclear transfer embryos. In experiment 2, the reconstructed oocytes were fused and activated with 1, 2, or 3 DC pulses of 1.2 kV cm-1 for 30 �s. In experiment 3, reconstructed oocytes were equilibrated in mTCM-199 medium at 38.5�C, 5% CO2 for 0, 1, 2, 3, 4, 5, and 6 h. After equilibration, the reconstructed oocytes were fused and activated with one DC pulse of 1.2 kV cm-1 for 30 �s in fusion medium. The reconstructed embryos were transferred into PZM-3 medium containing 0.3% BSA for further culture. The rates of embryo cleavage and development of blastocyst stage were evaluated at 48 h and 6-7 days, respectively. The cell numbers of blastocysts were counted by using Hoechst 33342 epifluorescence staining. Data were analyzed by ANOVA and Duncan


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 779-783 ◽  
Author(s):  
Y. Kato ◽  
Y. Tsunoda

Chimeric embryos between fertilized eggs from F1 (C57BL × CBA) and 15.5-16.5 days post coitum (dpc) male fetal germ cells (FGCs) from CD-1 strain (glucose phosphate isomerase, Gpi-1a/a) mice were produced by nuclear transfer. Briefly, a single FGC was fused with enucleated oocytes and activated, and the reconstituted oocytes were cultured to the 2-cell stage. The nucleus from the reconstituted 2-cell embryos was then transferred into an enucleated blastomere of the same stage embryos derived from F1 mice to produce chimeric embryos. The reconstituted 2-cell embryos, which synchronously divided to the 4-cell stage after treatment with nocodazole, were further cultured in vitro. Compacted morula and blastocysts were transferred to the uteri of pseudopregnant female mice. Some recipients were allowed to develop to term and the others were killed at mid gestation to analyze the contribution of donor FGC-derived cells. Survival to term was low with no chimeric animals. Glucose phosphate isomerase (GPI) analysis at midgestation revealed that some conceptuses had chimerism in the fetuses, trophoblast and yolk sac at day 10.5 of pregnancy. The contribution of donor cells was 37–47%, 19–65% and 12–63%, respectively. It was concluded that the nucleus from 15.5-16.5 dpc male fetal germ cells had the potency to develop into fetus, trophoblast and yolk sac after serial nuclear transfer with oocytes and fertilized embryos. The reason for the low viability of chimeric embryos is discussed.


Zygote ◽  
2003 ◽  
Vol 11 (2) ◽  
pp. 151-158 ◽  
Author(s):  
Rita P. Cervera ◽  
Fernando García-Ximénez

The present study in rabbits compared, in the first experiment, the effect of two commonly used oocyte ages, 13 h and 17 h after ovulation induction treatment, on the technical efficiency of somatic nuclear transfer steps, using fresh cumulus cells as nuclear donors. Recently ovulated metaphase II oocytes (13 h) showed higher fusion (13 h: 83% vs 17 h: 67%, p < 0.05) and in vitro development rates than in vivo slightly aged metaphase II oocytes (morula, 13 h: 74% vs 17 h: 25%, p < 0.05; blastocyst, 13 h: 16% vs 17 h: 8%; p < 0.05). In contrast, activation rate was higher in the 17 h group (13 h: 45% vs 17 h: 67%; p < 0.05). In a second experiment, using recently ovulated oocytes (13 h) as recipients, two donor cell types (from primary cultures of either cumulus cells or fetal fibroblasts) were tested to evaluate their effects on the efficiencies of the different technical steps of somatic nuclear transfer procedure. A better fusion rate was obtained when fetal fibroblasts were used as nuclear donors (cumulus cells: 45% vs fetal fibroblasts: 67%, p < 0.05). No statistically significant differences were detected in cleavage rate regardless of the cell type used (cumulus cells: 44% vs fetal fibroblasts: 60%, p > 0.05). However, in vitro development to morula (cumulus cells: 41% vs fetal fibroblasts: 14%, p < 0.05) and to blastocyst stage (cumulus cells: 27% vs fetal fibroblasts: 3%, p < 0.05) were different between cell types.


Sign in / Sign up

Export Citation Format

Share Document