scholarly journals Purification of mouse primordial germ cells by Nycodenz

Reproduction ◽  
2003 ◽  
pp. 667-675 ◽  
Author(s):  
T Mayanagi ◽  
R Kurosawa ◽  
K Ohnuma ◽  
A Ueyama ◽  
K Ito ◽  
...  

Primordial germ cells are important cells for the study of germ cell lineage. It has proved difficult to obtain highly purified primordial germ cells for preparation of a specific antibody. In the present study, a new method for purifying mouse primordial germ cells was developed using a Nycodenz gradient. Furthermore, the polyclonal anti-mouse primordial germ cells IgG derived from mouse primordial germ cells was prepared. As this IgG reacted only with primordial germ cells obtained at day 12.5 after mating, this antibody appeared to recognize the stage-specific antigen of primordial germ cells. One reason that a continuous primordial germ cell marker has not been obtained is because the purity of the primordial germ cells used has been too low to prepare the antibody. This new method represents a significant improvement in the purification of primordial germ cells; it is simpler than previous methods, and produced mouse primordial germ cells with a purity of more than 95%. In addition, the separation reagent Nycodenz is non-toxic and achieved separation of primordial germ cells without attachment of antibodies against the primordial germ cell membrane surface. This new purification method and stage-specific antibody will be useful for the analysis of the mechanisms of primordial germ cell migration.

Author(s):  
Arend W. Overeem ◽  
Yolanda W. Chang ◽  
Jeroen Spruit ◽  
Celine M. Roelse ◽  
Susana M. Chuva De Sousa Lopes

The human germ cell lineage originates from primordial germ cells (PGCs), which are specified at approximately the third week of development. Our understanding of the signaling pathways that control this event has significantly increased in recent years and that has enabled the generation of PGC-like cells (PGCLCs) from pluripotent stem cells in vitro. However, the signaling pathways that drive the transition of PGCs into gonia (prospermatogonia in males or premeiotic oogonia in females) remain unclear, and we are presently unable to mimic this step in vitro in the absence of gonadal tissue. Therefore, we have analyzed single-cell transcriptomics data of human fetal gonads to map the molecular interactions during the sex-specific transition from PGCs to gonia. The CellPhoneDB algorithm was used to identify significant ligand–receptor interactions between germ cells and their sex-specific neighboring gonadal somatic cells, focusing on four major signaling pathways WNT, NOTCH, TGFβ/BMP, and receptor tyrosine kinases (RTK). Subsequently, the expression and intracellular localization of key effectors for these pathways were validated in human fetal gonads by immunostaining. This approach provided a systematic analysis of the signaling environment in developing human gonads and revealed sex-specific signaling pathways during human premeiotic germ cell development. This work serves as a foundation to understand the transition from PGCs to premeiotic oogonia or prospermatogonia and identifies sex-specific signaling pathways that are of interest in the step-by-step reconstitution of human gametogenesis in vitro.


2008 ◽  
Vol 20 (8) ◽  
pp. 900 ◽  
Author(s):  
Yoshiaki Nakamura ◽  
Yasuhiro Yamamoto ◽  
Fumitake Usui ◽  
Yusuke Atsumi ◽  
Yohei Ito ◽  
...  

The aim of the present study was to improve the efficiency of endogenous primordial germ cell (PGC) depletion and to increase the ratio of donor PGCs in the gonads of recipient chicken embryos. A sustained-release emulsion was prepared by emulsifying equal amounts of Ca2+- and Mg2+-free phosphate-buffered saline containing 10% busulfan solubilised in N,N-dimethylformamide and sesame oil, using a filter. Then, 75 μg per 50 μL busulfan sustained-release emulsion was injected into the yolk. To determine the depletion and repopulation of PGCs in the gonads after 6 days incubation, whole-mount immunostaining was performed. The busulfan sustained-release emulsion significantly reduced the number of endogenous PGCs compared with control (P < 0.05). Moreover, the busulfan sustained-release emulsion significantly depleted endogenous PGCs compared with other previously reported busulfan delivery systems (P < 0.05), but with less variation, suggesting that the sustained-release emulsion delivered a consistent amount of busulfan to the developing chicken embryos. The PGC transfer study showed that the proportion of donor PGCs in the gonads of busulfan sustained-release emulsion-treated embryos after 6 days incubation increased 28-fold compared with control. In conclusion, the results demonstrate that exogenous PGCs are capable of migrating and settling in gonads from which endogenous PGCs have been removed using a busulfan sustained-release emulsion.


2016 ◽  
Vol 28 (2) ◽  
pp. 207
Author(s):  
J. Galiguis ◽  
C. E. Pope ◽  
C. Dumas ◽  
G. Wang ◽  
R. A. MacLean ◽  
...  

As precursors to germline stem cells and gametes, there are many potential applications for primordial germ cells (PGC). Primordial germ cell-like cells have been generated from mouse embryonic stem cells and induced pluripotent stem cells, which subsequently were used to produce functional spermatozoa, oocytes, and healthy offspring (Hayashi et al. 2012 Science 338(6109), 971–975). Applying this approach to generate sperm and oocytes of endangered species is an appealing prospect. Detection of molecular markers associated with PGC is essential to optimizing the process of PGC induction. In the current study, in vitro-derived domestic cat embryos were assessed at various developmental stages to characterise the expression of markers related to the specification process of cat PGC. In vivo-matured, IVF oocytes were cultured until Days 7, 9, and 12 post-insemination. Then, embryos were assessed by RT-qPCR to determine relative transcript abundance of the pluripotency markers NANOG, POU5F1, and SOX2; the epiblast marker DNMT3B; the primitive endoderm marker GATA4; the PGC marker PRDM14; and the germ cell marker VASA; RPS19 was used as the internal reference gene. To validate the qPCR results, fibroblasts served as the negative control cells, whereas spermatogonial stem cells (SSC) served as the positive control cells for GATA4, PRDM14, and VASA. Total mRNA were isolated using the Cells-to-cDNA™ II Kit (Ambion/Thermo Fisher Scientific, Waltham, MA, USA) from either pools of 2 to 6 embryos or ~25 000 fibroblasts/SSC. A minimum of 2 biological replicates for each sample type was analysed, with transcript abundance detected in 2 technical replicates by SYBR Green chemistry. Student’s t-tests were performed on the ΔCts for statistical analysis. PRDM14, specific to the germ cell lineage, was detected as early as Day 7, suggesting the presence of PGC precursor cells. Compared with their levels at Day 7, PRDM14 expression was 0.34-fold lower in SSC (P < 0.05), whereas expression of VASA and GATA4 were 1964-fold and 144-fold higher, respectively (P < 0.05). This seems to emphasise the relative importance of PRDM14 in pre-germ cell stages. In general, all genes analysed were up-regulated from Day 7 to Day 9. This up-regulation was statistically significant for SOX2 and GATA4 (P < 0.05). Relative to that at Day 9, all transcripts were relatively less abundant at Day 12 (P < 0.05 for NANOG, POU5F1, SOX2, DNMT3B, and PRDM14). The data suggest that PGC specification takes place near Day 9, with peak specification activity concluding by Day 12. Although much needs be explored about PGC specification in the cat before applying induction and in vitro germ cell production techniques, these findings represent the first step towards a new potential strategy for preserving endangered and threatened felids.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 381-393 ◽  
Author(s):  
Masashi Yamaji ◽  
Takashi Tanaka ◽  
Mayo Shigeta ◽  
Shinichiro Chuma ◽  
Yumiko Saga ◽  
...  

Mutations of RNA-binding proteins such as NANOS3, TIAL1, and DND1 in mice have been known to result in the failure of survival and/or proliferation of primordial germ cells (PGCs) soon after their fate is specified (around embryonic day (E) 8.0), leading to the infertility of these animals. However, the mechanisms of actions of these RNA-binding proteins remain largely unresolved. As a foundation to explore the role of these RNA-binding proteins in germ cells, we established a novel transgenic reporter strain that expresses NANOS3 fused with EGFP under the control of Nanos3 regulatory elements. NANOS3–EGFP exhibited exclusive expression in PGCs as early as E7.25, and continued to be expressed in female germ cells until around E14.5 and in male germ cells throughout the fetal period with declining expression levels after E16.5. NANOS3–EGFP resumed strong expression in postnatal spermatogonia and continued to be expressed in undifferentiated spermatogonial cells in adults. Importantly, the Nanos3–EGFP transgene rescued the sterile phenotype of Nanos3 homozygous mutants, demonstrating the functional equivalency of NANOS3–EGFP with endogenous NANOS3. We found that throughout germ cell development, a predominant amount of  NANOS3–EGFP co-localized with TIAL1 (also known as TIAR) and phosphorylated eukaryotic initiation factor 2α, markers for the stress granules, whereas a fraction of it showed co-localization with DCP1A, a marker for the processing bodies. On the other hand, NANOS3–EGFP did not co-localize with Tudor domain-containing protein 1, a marker for the intermitochondrial cements, in spermatogenic cells. These findings unveil the presence of distinct posttranscriptional regulations in PGCs soon after their specification, for which RNA-binding proteins such as NANOS3 and TIAL1 would play critical functions.


Development ◽  
1977 ◽  
Vol 41 (1) ◽  
pp. 33-46
Author(s):  
Brigitta Züst ◽  
K. E. Dixon

Approximately 20–25 primordial germ cells leave the endoderm between stages 38–41 and localize in the dorsal root of the mesentery by stage 43/44. At this time all the cells contain large quantities of yolk which is gradually resorbed. The cells begin dividing between stages 48–52. The number and size of the germ cells were measured in tadpoles between stages 48–54 of development. The results indicate that in females the germ cells divide more often than in males. In both sexes the mitoses are grossly unequal, leading to the formation of a new generation of germ cells which are considerably smaller (one-tenth to one-fifth) than the size of the primordial germ cells at stage 48. The germ cells in male tadpoles at stage 54 are larger than in female tadpoles at the same stage. In tadpoles which developed from eggs irradiated in the vegetal hemisphere with u.v. light at the 2- to 4-cell-stage, primordial germ cells migrate into the genital ridges much later (stage 46–48) than in unirradiated embryos. They also differ morphologically from germ cells in control animals at this stage in that they are approximately one-tenth the size, lacking yolk in the cytoplasm and have a more highly lobed nucleus. Comparison of the results in unirradiated and irradiated animals suggests that the germ cell lineage is composed of a series of ordered, predictable events, and serious disruption of one of the events deranges later events.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2422
Author(s):  
Dragos Scarlet ◽  
Stephan Handschuh ◽  
Ursula Reichart ◽  
Giorgia Podico ◽  
Robyn E. Ellerbrock ◽  
...  

It was the aim of this study to characterize the development of the gonads and genital ducts in the equine fetus around the time of sexual differentiation. This included the identification and localization of the primordial germ cell population. Equine fetuses between 45 and 60 days of gestation were evaluated using a combination of micro-computed tomography scanning, immunohistochemistry, and multiplex immunofluorescence. Fetal gonads increased in size 23-fold from 45 to 60 days of gestation, and an even greater increase was observed in the metanephros volume. Signs of mesonephros atrophy were detected during this time. Tubular structures of the fetal testes were present from day 50 onwards, whereas cell clusters dominated in the fetal ovary. The genital ducts were well-differentiated and presented a lumen in all samples. No sign of mesonephric or paramesonephric duct degeneration was detected. Expression of AMH was strong in the fetal testes but absent in ovaries. Irrespective of sex, primordial germ cells selectively expressed LIN28. Migration of primordial germ cells from the mesonephros to the gonad was detected at 45 days, but not at 60 days of development. Their number and distribution within the gonad were influenced (p < 0.05) by fetal sex. Most primordial germ cells (86.8 ± 3.2% in females and 84.6 ± 4.7% in males) were characterized as pluripotent according to co-localization with CD117. However, only a very small percentage of primordial germ cells were proliferating (7.5 ± 1.7% in females and 3.2 ± 1.2% in males) based on co-localization with Ki67. It can be concluded that gonadal sexual differentiation in the horse occurs asynchronously with regard to sex but already before 45 days of gestation.


2005 ◽  
Vol 17 (5) ◽  
pp. 587 ◽  
Author(s):  
Yixiang Zhang ◽  
Xiumei Jin ◽  
Haitang Han ◽  
Zandong Li

Polychlorinated biphenyls cause developmental and physiological anomalies in the reproductive system. This study investigated the effects of 2,2′,5,5′-tetrachlorobiphenyl (PCB52), which can produce oestrogenic effects on the homeostasis of chicken primordial germ cells from the initial stage until completion of their settlement in the gonadal primordium. The blastoderm of chicken embryos was injected with 1 μL PCB52 (10 µmol/L) and oestradiol (100 µmol/L) before incubation, and the number of primordial germ cells was determined during their migration and development. The number of primordial germ cells in germinal crescents in PCB52-treated groups was slightly decreased (P = 0.068), but it was reduced significantly at stages 13–15 and 28–30 (P < 0.01, respectively) compared with controls. No obvious effects on primordial germ cell migration were observed with oestradiol treatments. The present results suggest that the influence of PCB52 on chicken primordial germ cell migration and proliferation may be via its toxic effect, not its oestrogen-mimicking effect, and provide information on the sensitivity of primordial germ cells to the direct action of PCB52.


2021 ◽  
Author(s):  
Ruifeng Zhao ◽  
Qisheng Zuo ◽  
Xia Yuan ◽  
Kai Jin ◽  
Yani Zhang ◽  
...  

Abstract The chicken primordial germ cell (PGCs) has the unique characteristic of settling in gonad through blood migration, which was the only way to realize the recovery of bird species. However, the PGCs obtained from a single embryo was far from enough to meet the practical application, while somatic cells can be obtained in large quantities. Therefore, the problem of insufficient PGCs can be solved by the induction of somatic cells into PGCs. Here, we successfully transdifferentiate somatic cells into PGCs, which can be transplanted to the recipient to produce offspring. In detail, The CEF of Black-Feathered Langshan Chicken was reprogrammed into iPS by reprogramming factors Oct4, Sox2, Nanog and Lin28, then was induced into PGCs by BMP4/BMP8b/EGF system. The induced PGCs has similar biological characteristics to the primary PGCs, which was transplanted into White Plymouth Rock Chicken, which self-crossed to produce clone-like offspring. It was the the first time to demonstrate the feasibility of avian cloning from somatic cells.


Development ◽  
1999 ◽  
Vol 126 (8) ◽  
pp. 1655-1664 ◽  
Author(s):  
R. Anderson ◽  
R. Fassler ◽  
E. Georges-Labouesse ◽  
R.O. Hynes ◽  
B.L. Bader ◽  
...  

Primordial germ cells are the founder cells of the gametes. They are set aside at the initial stages of gastrulation in mammals, become embedded in the hind-gut endoderm, then actively migrate to the sites of gonad formation. The molecular basis of this migration is poorly understood. Here we sought to determine if members of the integrin family of cell surface receptors are required for primordial germ cell migration, as integrins have been implicated in the migration of several other motile cell types. We have established a line of mice which express green fluorescent protein in germline cells that has enabled us to efficiently purify primordial germ cells at different stages by flow cytometry. We have catalogued the spectrum of integrin subunit expression by primordial germ cells during and after migration, using flow cytometry, immunocytochemistry and RT-PCR. Through analysis of integrin beta1(−/−)--&gt;wild-type chimeras, we show that embryonic cells lacking beta1 integrins can enter the germline. However, integrin beta1(−/−) primordial germ cells do not colonize the gonad efficiently. Embryos with targeted deletion of integrin subunit alpha3, alpha6, or alphaV show no major defects in primordial germ cell migration. These results demonstrate a role for beta1-containing integrins in the development of the germline, although an equivalent role for * integrin subunit(s) has yet to be established.


Sign in / Sign up

Export Citation Format

Share Document