Changes in gene expressions induced by perinatal estrogen related to the brain sexual differentiation in rodents

2014 ◽  
Author(s):  
Youki Watanabe ◽  
Mototsugu Sakakibara ◽  
Yoshihisa Uenoyama ◽  
Shiori Minabe ◽  
Chikaya Deura ◽  
...  
1986 ◽  
Vol 108 (2) ◽  
pp. 281-285 ◽  
Author(s):  
A. Perakis ◽  
F. Stylianopoulou

ABSTRACT Exposure of the developing female brain to a 5α-dihydrotestosterone surge on day 18 of gestation resulted in defeminization and slight masculinization of the brain. In contrast, abolition of the androgenic effects of the testosterone peak naturally occurring in male fetuses on day 18 of gestation by exposure of the developing male brain to cyproterone acetate, at that time, resulted in demasculinization while feminization was not affected. On the basis of these results, we suggest that both the prenatal testosterone peak and the high testosterone levels occurring in males neonatally are necessary for aromatization sufficient to effect complete male rat brain sexual differentiation. J. Endocr. (1986) 108, 281–285


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Jordyn M. Stuart ◽  
Jason J. Paris ◽  
Cheryl Frye ◽  
Heather B. Bradshaw

Background. Endogenous cannabinoids (eCBs) are involved in the development and regulation of reproductive behaviors. Likewise, prostaglandins (PGs) drive sexual differentiation and initiation of ovulation. Here, we use lipidomics strategies to test the hypotheses that mating immediately activates the biosynthesis and/or metabolism of eCBs and PGs and that specific mating strategies differentially regulate these lipids in the brain.Methods. Lipid extractions and tandem mass spectrometric analysis were performed on brains from proestrous rats that had experienced one of two mating strategies (paced or standard mating) and two nonmated groups (chamber exposed and home cage controls). Levels of PGs (PGE2 and PGF2alpha), eCBs (AEA and 2-AG,N-arachidonoyl glycine), and 4 related lipids (4N-acylethanolamides) were measured in olfactory bulb, hypothalamus, hippocampus, thalamus, striatum, midbrain, cerebellum, and brainstem.Results. Overall, levels of these lipids were significantly lower among paced compared to standard mated rats with the most dramatic decreases observed in brainstem, hippocampus, midbrain, and striatum. However, chamber exposed rats had significantly higher levels of these lipids compared to home cage controls and paced mated wherein the hippocampus showed the largest increases.Conclusions. These data demonstrate that mating strategies and exposure to mating arenas influence lipid signaling in the brain.


2016 ◽  
Vol 371 (1688) ◽  
pp. 20150114 ◽  
Author(s):  
Nancy G. Forger

Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour.


Human Growth ◽  
1979 ◽  
pp. 183-221
Author(s):  
Pamela C. B. Mackinnon

F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 1499
Author(s):  
Endang Winiati Bachtiar ◽  
Citra F. Putri ◽  
Retno D. Soejoedono ◽  
Boy M. Bachtiar

Porphyromonas gingivalis has virulence factors such as gingipain and lipopolysaccharide, causing bacteremia to reach the brain and activate neuroinflammatory release cytokines. This study analyzed the effect of the co-culture of neuron cells with P. gingivalis coated with anti-P. gingivalis antibodies against cytokines produced by neuron cells. The gene expressions of the TNF, IL1B, iNOS2 in neurons was evaluated using RT-qPCR. The results showed that P. gingivalis coated with anti-P. gingivalis antibody before co-culture with neuron cells could decrease the gene expression of TNF, IL1B, and iNOS2 of neuron cells.


Sign in / Sign up

Export Citation Format

Share Document