scholarly journals The Thermoelectric Solar Panels

2016 ◽  
Vol 3 (1) ◽  
pp. 9-14 ◽  
Author(s):  
R. Ahiska ◽  
L. Nykyruy ◽  
G. Omer ◽  
G. Mateik

In this study, load characteristics of thermoelectric and photovoltaic solar panels areinvestigated and compared with each other with experiments. Thermoelectric solar panels convertsthe heat generated by sun directly to electricity; while, photovoltaic solar pales converts photonicenergy from sun to electricity. In both types, maximum power can be obtained when the loadresistance is equal to internal resistance. According to experimental results, power generated fromunit surface with thermoelectric panel is 30 times greater than the power generated by photovoltaicpanel. From a panel surface of 1 m2, thermoelectric solar panel has generated 4 kW electric power,while from the same surface, photovoltaic panel has generated 132 W only.

2021 ◽  
Vol 11 (22) ◽  
pp. 10999
Author(s):  
Jesús M. Ceresuela ◽  
Daniel Chemisana ◽  
Nacho López

With the clear goal of improving photovoltaic (PV) technology performance towards nearly-zero energy buildings, a graph theory-based model that characterizes photovoltaic panel structures is developed. An algorithm to obtain all possible configurations of a given number of PV panels is presented and the results are exposed for structures using 3 to 7 panels. Two different classifications of all obtained structures are carried out: the first one regarding the maximum power they can produce and the second according to their capability to produce energy under a given probability that the solar panels will fail. Finally, both classifications are considered simultaneously through the expected value of power production. This creates structures that are, at the same time, reliable and efficient in terms of production. The parallel associations turn out to be optimal, but some other less expected configurations prove to be rated high.


2014 ◽  
Vol 21 (4) ◽  
pp. 733-740 ◽  
Author(s):  
Janusz Mroczka ◽  
Mariusz Ostrowski

Abstract Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.


INSIST ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 81
Author(s):  
Adhy Prayitno ◽  
Muhammad Irvan ◽  
Sigit Nurharsanto ◽  
Wahyu Fajar Yantoa

Observations and measurements have been conducted towards a solar panel electric power output that is utilized by a solar tracking system. The electrical power output depends on the position of the sun and time and the direction of the panel surface against the angle of the incident light. For power optimization, the solar panel surface should always be directed perpendicular to the direction of the sunlight falling to the surface of the panel. The application of the solar tracking system controlled by a micro controller gives the expected results. The electrical power output of a static solar panel mounted on a fixed position becomes the benchmark of the output electric power value in this study. The measurement results of the electric power output of the solar panel with sun tracking system shows a significant increase in sunny weather conditions.The average increase of that is about 57.3%.Keywords: LDR, micro controller, optimal power output, performance improvment, sun tracking,


2021 ◽  
Vol 3 (2) ◽  
pp. 133-140
Author(s):  
Marhaposan Situmorang ◽  
Monika Panjaitan

Solar energy has been considered as a promising renewable energy source for electric power generation. Solar panel systems have become a popular object to be developed by researchers, but the low efficiency of solar panels in energy conversion is one of the weaknesses of this system. Factors that affect the output produced by solar panels are the intensity of sunlight and the working temperature of the solar panels. The solar panel module has a single operating point where the voltage and current outputs produce the maximum power output. There are three main methods in Maximum Power Point Tracking (MPPT), namely conventional methods, artificial intelligence methods, and hybrid methods. In most solar panel systems, this study uses Maximum Power Point Tracking (MPPT) with perturb and observe algorithms to maximize the use of solar energy. The maximum power point extracted by MPPT will be supplied to the battery and controlled by the Charge Controller. The energy stored in the battery will be used by the Thermo Electric Cooler cooling system to reach the desired temperature point using the keypad as temperature input.


Author(s):  
Titien Kumala Sari ◽  
Toibah Umi Kalsum

Panel Surya (Panel Photovoltaik) adalah suatu panel yang terdiri dari kumpulan sel surya berfungsi merubah energi cahaya menjadi energi listrik dengan memanfaatkan efek photovoltaik. Photovoltaik dapat diartikan sebagai "cahaya-listrik". Sel surya atau sel PV bergantung pada efek photovoltaik untuk menyerap energi matahari dan menyebabkan arus mengalir antara dua lapisan bermuatan yang berlawanan. Pada umumnya modul photovoltaik dipasarkan dengan kapasitas 50 Watt-peak (Wp) dan kelipatannya. Unit satuan Watt-peak adalah satuan daya (Watt) yang dapat dibangkitkan oleh modul photovoltaik dalam keadaan standar uji (Standard Test Condition – STC). Penggunaan arduino uno pada panel surya ini tujuannya agar pengaturan arah panel surya selalu tegak lurus dengan arah cahaya matahari. Dengan demikian dibuat sebuah sistem kontrol yang dapat mengatur arah panel surya secara otomatis melalui pengerak driver motor.Hasil analisa sistem gerak panel surya berbasis Arduino Uno, pada Panel Surya ini menggunakan Arduino Uno sebagai sistem gerak untuk mengikuti arah matahari, RTC digunakan sebagai penerimaan perintah yang dikirim melalui panel surya agar dapa membaca kisaran sudut, stepper difungsikan sebagai penggerak panel surya yang dikendalikan menggunakan Arduino UNO menggunakan aplikasi. Hasil yang optimal terdapat pada jam 11.00 - 12.00 wib karena cahaya matahari lebih terik dari waktu pagi dan sore. Hasil arus dan tegangan sesuai yang didapatkan karena pengoptimal arus dan tegangan pada panel surya bergerak lebih efisien. Kata kunci :Panel Surya, Driver Motor, RTC, Arduino UNOThe Solar Panel (Photovoltaic Panel) is a panel consisting of a collection of solar cells that functions to convert light energy into electrical energy by utilizing photovoltaic effects. Photovoltaics can be interpreted as "light-electricity". Solar cells or PV cells depend on photovoltaic effects to absorb solar energy and cause current to flow between two opposite charged layers. In general, photovoltaic modules are marketed with a capacity of 50 Watt-peak (Wp) and multiples thereof. Watt-peak units are units of power (Watts) that can be generated by photovoltaic modules in standard test conditions (STC). The use of Arduino Uno on solar panels is intended to regulate the direction of the solar panel always perpendicular to the direction of sunlight. Thus, a control system is created that can automatically adjust the direction of the solar panel through the driver of the motor. The results of the analysis of the motion of solar panels based on Arduino Uno, in this Solar Panel using Arduino Uno as a motion system to follow the direction of the sun, RTC is used as receiving commands sent through solar panels so that they can read the angle range, stepper functioned as a solar panel driven Arduino UNO uses the application. Optimal results are available at 11.00 - 12.00 WIB because the sun's rays are hotter than morning and evening. The current and voltage results are as obtained because the current and voltage optimizers in solar panels move more efficiently. Keywords: Solar Panel, Motor Driver, RTC, Arduino UNO


2020 ◽  
Vol 190 ◽  
pp. 00026
Author(s):  
Mohammad Luthfansyah ◽  
Suyanto Suyanto ◽  
Abu Bakarr Momodu Bangura

Maximum Power Point Tracking (MPPT) is a method that can be used to optimize the electrical power output from solar panels. The performance of the MPPT method on solar panel systems can be influenced by many variables. One of them is the selection of a DC-DC power converter. DC-DC-DC Converter is a component that is used to optimize the performance of solar panels. Several types of DC-DC Converter are Buck, Buck-Boost, Single Ended Primary Inductance Converter (SEPIC), and CUK. Each converter has a different effect on solar panels output power. In order to observe and make a comprehensive analysis, simulations are performed through PSIM (Power Simulator) software on the performance of several DC-DC Converters that use Flower Pollination Algorithm (FPA) as the MPPT algorithm. Variables that observed are the output power characteristic, the response of the voltage-current ripple signal, and the accuracy of the converter in the process of reaching the maximum power point condition. As a result, CUK converter can obtain the highest value of solar panel output power, 145.02 W. A low ripple level with a stable power value response is entirely generated by CUK and SEPIC Converter. Overall, for this system, the CUK converter has better performance than the other converters.


2021 ◽  
Vol 926 (1) ◽  
pp. 012014
Author(s):  
E G Pratama ◽  
W Sunanda ◽  
R F Gusa

Abstract Photovoltaic panel as a producer of renewable energy is increasingly being utilized. The electrical energy produced by photovoltaic panel can be used for aeration in fish ponds located quite isolated and far from the main electricity grid. Aeration is important for fishery because it affects the dissolved oxygen level in the water. The system uses two units of 50 Wp floating solar panels and four units of DC aerator of 12 Volt/0.28 A. The measurement of solar irradiance, solar panel temperature, output voltage and current was conducted to monitor floating solar panel performance. Dissolved oxygen level measured in the water without aeration was 3 - 3.9 mg/L while after using floating photovoltaic panels to supply the electrical energy for aerators, dissolved oxygen level in the water was increased to 4.1 - 4.8 mg/L.


Solar photovoltaic panel tends to lose its performance, when foreign particles start accumulating over it. To get panel at its best, frequent cleaning action is required by some means. It would be beyond imagination, if there comes a task to clean entire solar farm covering miles squares and more, hence a better solution is required. Solar photovoltaic panel cleaning system is a robotic system designed to clean solar panel surface; in order to sustain the efficiency. To avoid frequent site visits, robots can be placed in each array, and by further deploying Internet of Things (IoTs), distant monitoring and cleaning can be achieved. The command for the robots can be given by distant operator through the cloud they are connected with. To make this system even smarter, a separate sensing unit shall be installed along with different sensors that can detect the limit of dust deposition and shall automatically order to perform cleaning action. This study presents the need of cleaning system, which is followed by design and fabrication of robot that meets the design specification and required performance. A month-long data is collected and analyzed to formulate and validate the automatic cleaning algorithm in real environment. From this study, it is concluded that, the IoT can be implemented in the solar PV cleaning system which can improve the system performance significantly.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3815 ◽  
Author(s):  
Wang ◽  
Nabawy ◽  
Cioncolini ◽  
Revell

Tip masses are used in cantilevered piezoelectric energy harvesters to shift device resonance towards the required frequency for harvesting and to improve the electric power generation. Tip masses are typically in the form of concentrated passive weights. The aim of this study is to assess the inclusion of solar panels as active tip masses on the dynamics and power generation performance of cantilevered PVDF (polyvinylidene fluoride)-based vibration energy harvesters. Four different harvester geometries with and without solar panels are realized using off-the-shelf components. Our experimental results show that the flexible solar panels considered in this study are capable of reducing resonance frequency by up to 14% and increasing the PVDF power generated by up to 54%. Two analytical models are developed to investigate this concept; employing both an equivalent concentrated tip mass to represent the case of flexible solar panels and a distributed tip mass to represent rigid panels. Good prediction agreement with experimental results is achieved with an average error in peak power of less than 5% for the cases considered. The models are also used to identify optimum tip mass configurations. For the flexible solar panel model, it is found that the highest PVDF power output is produced when the length of solar panels is two thirds of the total length. On the other hand, results from the rigid solar panel model show that the optimum length of solar panels increases with the relative tip mass ratio, approaching an asymptotic value of half of the total length as the relative tip mass ratio increases significantly.


Author(s):  
Adithya P ◽  
Harsha Awate ◽  
Nikitha L ◽  
Vidhyashree H S ◽  
P Praveen

Solar panels are used to convert the energy from sunlight to electrical energy. The different impacts on the solar panel which influences the productivity of the solar panel are Sun movement and dirt which generate the fundamental impact on solar panel. Because of those impacts, less yield generated by solar panel so to increase the effectiveness of the solar panel is by utilizing tracking and cleaning technique. There is a framework which is mix of tracking and cleaning. In this cutting-edge world, power is likewise added to the most fundamental requirements in everybody's day to day existence. With the expanding request of power, destruction of the natural resources is done and will be used for energy generation. To adjust the shortage of natural resources unconventional fuels are used for power generation and are used by the most part of world. Among all the unconventional fuel sources, power created by solar panel energy is broadly utilized. The abundancy of this type of energy is more all around the earth. A framework which tracks sun as well as automatic washing of solar panel with automated instructions is required. The instrument requires a LDR for following the sun and for cleaning wiper module is required. Regarding every day energy production, the sun tracking - cum cleaning plan gives more energy output when contrasted with the fixed PV module. Without this framework this cleaning work is done by man force which is good for small scale but for large scale like power plant it is very difficult. Then led display is required to display the result of the framework.


Sign in / Sign up

Export Citation Format

Share Document