scholarly journals The SMC' Is a Highly Accurate Approximation to the Ancestral Recombination Graph

Genetics ◽  
2015 ◽  
Vol 200 (1) ◽  
pp. 343-355 ◽  
Author(s):  
P. R. Wilton ◽  
S. Carmi ◽  
A. Hobolth
2020 ◽  
Author(s):  
Yun Deng ◽  
Yun S. Song ◽  
Rasmus Nielsen

AbstractThe ancestral recombination graph (ARG) contains the full genealogical information of the sample, and many population genetic inference problems can be solved using inferred or sampled ARGs. In particular, the waiting distance between tree changes along the genome can be used to make inference about the distribution and evolution of recombination rates. To this end, we here derive an analytic expression for the distribution of waiting distances between tree changes under the sequentially Markovian coalescent model and obtain an accurate approximation to the distribution of waiting distances for topology changes. We use these results to show that some of the recently proposed methods for inferring sequences of trees along the genome provide strongly biased distributions of waiting distances. In addition, we provide a correction to an undercounting problem facing all available ARG inference methods, thereby facilitating the use of ARG inference methods to estimate temporal changes in the recombination rate.


2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Li Wang ◽  
Yong Qin ◽  
Jie Xu ◽  
Limin Jia

A fuzzy optimization model based on improved symmetric tolerance approach is introduced, which allows for rescheduling high-speed railway timetable under unexpected interferences. The model nests different parameters of the soft constraints with uncertainty margin to describe their importance to the optimization purpose and treats the objective in the same manner. Thus a new optimal instrument is expected to achieve a new timetable subject to little slack of constraints. The section between Nanjing and Shanghai, which is the busiest, of Beijing-Shanghai high-speed rail line in China is used as the simulated measurement. The fuzzy optimization model provides an accurate approximation on train running time and headway time, and hence the results suggest that the number of seriously impacted trains and total delay time can be reduced significantly subject to little cost and risk.


2004 ◽  
Vol 04 (01) ◽  
pp. 63-76 ◽  
Author(s):  
OLIVER JENKINSON

Given a non-empty finite subset A of the natural numbers, let EA denote the set of irrationals x∈[0,1] whose continued fraction digits lie in A. In general, EA is a Cantor set whose Hausdorff dimension dim (EA) is between 0 and 1. It is shown that the set [Formula: see text] intersects [0,1/2] densely. We then describe a method for accurately computing dimensions dim (EA), and employ it to investigate numerically the way in which [Formula: see text] intersects [1/2,1]. These computations tend to support the conjecture, first formulated independently by Hensley, and by Mauldin & Urbański, that [Formula: see text] is dense in [0,1]. In the important special case A={1,2}, we use our computational method to give an accurate approximation of dim (E{1,2}), improving on the one given in [18].


Author(s):  
Markus Wick ◽  
Sebastian Grabmaier ◽  
Matthias Juettner ◽  
Wolfgang Rucker

Purpose The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry. Design/methodology/approach The high computational effort of steady-state simulations limits the optimization of electrical machines. Stationary solvers calculate a fast but less accurate approximation without eddy-currents and hysteresis losses. The harmonic balance approach is known for efficient and accurate simulations of magnetic devices in the frequency domain. But it lacks an efficient method for the motion of the geometry. Findings The three-phase symmetry reduces the simulated geometry to the sixth part of one pole. The motion transforms to a frequency offset in the angular Fourier series decomposition. The calculation overhead of the Fourier integrals is negligible. The air impedance approximation increases the accuracy and yields a convergence speed of three iterations per decade. Research limitations/implications Only linear materials and two-dimensional geometries are shown for clearness. Researchers are encouraged to adopt recent harmonic balance findings and to evaluate the performance and accuracy of both formulations for larger applications. Practical implications This method offers fast-frequency domain simulations in the optimization process of rotating machines and so an efficient way to treat time-dependent effects such as eddy-currents or voltage-driven coils. Originality/value This paper proposes a new, efficient and accurate method to simulate a rotating machine in the frequency domain.


2010 ◽  
Vol 19 (04) ◽  
pp. 514-520 ◽  
Author(s):  
FEDIR IVANYUK ◽  
KRZYSZTOF POMORSKI

We have calculated the liquid drop fission barriers of medium and heavy nuclei within the Lublin-Strasbourg-Drop model. Exploiting in addition the topographical theorem by Myers and Światecki we propose a simple but quite accurate approximation of the fission barrier heights. When comparing the r.m.s. deviation of approximated versus experimental values of fission barrier heights for known nuclei with Z > 70 a value 1.1 MeV is obtained which is comparable with the experimental uncertainties. The Strutinsky optimal shape method is generalized to the left-right asymmetric shapes of nuclei in order to investigate the influence of this degree of freedom on the barrier heights.


1969 ◽  
Vol 36 (2) ◽  
pp. 122-133
Author(s):  
M. A. Lugo López

Very accurate estimations of the permanent wilting percentage can be obtained for soils of all regions of Puerto Rico by use of regression equations based on the hygroscopic coefficient. Reliable estimates can also be obtained for humid-region soils by using the clay content as a basis. Attempts to correlate permanent wilting-percentage values with moisture equivalents and organic-matter content did not give such satisfactory results. The 15-atmosphere percentage as determined by using pressure plates gives an accurate approximation of permanent wilting-percentage values. It is time-saving, but initial expense in laboratory equipment is rather high. This approach is to be preferred whenever feasible. A regression equation is given relating pressure-plate values to the permanent wilting percentage. Whenever less precise estimates are acceptable and time is not a factor, advantage should be taken of the established correlation between the hygroscopic coefficient and the permanent wilting percentage.


2021 ◽  
Vol 7 (29) ◽  
pp. eabc0776
Author(s):  
Nathan K. Schaefer ◽  
Beth Shapiro ◽  
Richard E. Green

Many humans carry genes from Neanderthals, a legacy of past admixture. Existing methods detect this archaic hominin ancestry within human genomes using patterns of linkage disequilibrium or direct comparison to Neanderthal genomes. Each of these methods is limited in sensitivity and scalability. We describe a new ancestral recombination graph inference algorithm that scales to large genome-wide datasets and demonstrate its accuracy on real and simulated data. We then generate a genome-wide ancestral recombination graph including human and archaic hominin genomes. From this, we generate a map within human genomes of archaic ancestry and of genomic regions not shared with archaic hominins either by admixture or incomplete lineage sorting. We find that only 1.5 to 7% of the modern human genome is uniquely human. We also find evidence of multiple bursts of adaptive changes specific to modern humans within the past 600,000 years involving genes related to brain development and function.


Sign in / Sign up

Export Citation Format

Share Document