scholarly journals Fabrication of activated carbon using two-step co-pyrolysis of used rubber and larch sawdust

BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8641-8652
Author(s):  
Jing Geng ◽  
Lu-Fei Li ◽  
Wen-Liang Wang ◽  
Jian-Min Chang ◽  
Chang-Lei Xia ◽  
...  

Characteristics of the char produced in the co-pyrolysis of used rubber and larch sawdust were studied in the conversion of low-valued pyrolysis char into value-added activated carbon using two-step co-pyrolysis, namely pyrolysis and activation processes. The physicochemical characteristics of the chars were examined by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The results revealed that after the two-step co-pyrolysis, the upgraded carbon had BET surface areas ranging from 600 m2 g−1 to 900 m2 g−1, which were higher than the requirements for activated carbon (American Water Works Association B600 standard). Additionally, as the sawdust/rubber ratio increased, the BET value increased accordingly. A possible reaction mechanism is proposed based on the experimental results during the activation process.

2012 ◽  
Vol 466-467 ◽  
pp. 458-462
Author(s):  
Ying Jie Zhang ◽  
Shu Fen Xu ◽  
Xia Liao ◽  
Rong Yang ◽  
Da Peng Li

A new heterogeneous Fenton-like catalyst of Fe/S/GAC was prepared by granular activated carbon (GAC) soaked in solution of (NH4)2S2O8 and Fe(NO3)3. The effect of the concentration of (NH4)2S2O8 , Fe(NO3)3, drying temperature and different catalysts on the catalytic reactivity of catalyst was discussed. The removal rate of Orange IV was used to express the catalytic reactivity of the catalyst. The prepared catalysts were characterized by X-ray diffraction (XRD), specific surface area (BET) and scanning electron microscopy (SEM). The removal rate of Orange IV followed second-order kinetics. The catalyst of Fe/S/GAC has higher catalytic activity than that of Fe/GAC.


2019 ◽  
Vol 11 (41) ◽  
pp. 5311-5319 ◽  
Author(s):  
Veysel Berkdemir ◽  
Şerife Tokalıoğlu ◽  
Süleyman Yıldız ◽  
Şaban Patat

In this study, an activated carbon@Fe/Mn/O composite was synthesized and characterized by X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Brunauer, Emmett, and Teller surface area and zeta potential measurements.


2018 ◽  
Vol 15 (1) ◽  
pp. 62
Author(s):  
Pandi Kurniawan ◽  
Erman Taer ◽  
Usman Malik ◽  
Rika Taslim

Activated carbon electrode have been prepare from durian shell focused in KOH concentration variations at chemical activation process. The preparation of carbon electrodes begins with pre-carbonization process, grinding using Hard Grinder and ball milling, after that followed by sieving process with particle size at range of 39 - 52 μm. Chemical activation was performed by using KOH activator agent with concentration variation of 0.5 M, 0.6 M, 0.7 M. Carbon powder are formed to pellet form using Hydraulic Press at a 8 ton compression pressure. The carbonization process is carried out a temperature of 600°C in the N2 gas atmosphere at a temperature of 900°C for 2 hours. The electrodes characterization are performed to determine the physical and electrochemical properties.The physical properties such as density, degree of cristanility, surface morfology was analyzed by calculate the electrode dimension such as, mass, thickness and diameter, X-ray diffraction analysis and Scanning Electron Microscopy Analysis. the electrochemical properties was studied the cell capacitance and the electrode capacitance specific using Cyclic Voltammetry method. the electrode density were decrease with the increasing the KOH concentration. The smallest density has been found at electrode using a KOH concentration of 0.7 M. The XRD test showed a carbon was amorfphuse structure identified by existing two broadening peaks at an angle of 2θ, ie 24.967°, 44.315° and 81.332° which describes the  (002), (100) and (112) planes. Furthermore, samples were analyzed by Scanning Electron Microscopy and X-ray diffraction. The  cyclic voltammetry result, obtained the highest specific capacitance of 89.05 F/g and cell capacitance 24,04 F was found at electrode with a KOH  concentration of 0.7 M. From this research it can be concluded that the KOH optimum concentration was 0.7 M.


2016 ◽  
Vol 847 ◽  
pp. 308-312
Author(s):  
Ming Long Zhong ◽  
Chao Yang Wang ◽  
Zhi Bing Fu ◽  
Yong Zeng ◽  
Qi Fang ◽  
...  

The radiation method was studied to prepare Pd-doped SiO2 aerogels with different contents. The textural properties of the pristine SiO2 aerogels and Pd-doped SiO2 aerogels were systematically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N2 adsorption measurements. It can be concluded that there were large amounts of Pd particles presented in the framework of SiO2 aerogels after radiation. In addition, the size of Pd particles increased with the increase of radiation dose. The introduction of Pd nanoparticles produced a reduction of the surface areas, total pore and mesopore volumes.


2013 ◽  
Vol 781-784 ◽  
pp. 243-246
Author(s):  
Guang Jian Wang ◽  
Jian Kang Zhang ◽  
Hui Liu

Deep desulfurization via π-complexation adsorption is a promising method for the purification of diesel. Activated carbon (AC) with copper and palladium deposited on their surfaces were investigated as adsorbents to remove benzothiophene (BT) from model diesel fuel. The adsorbents were prepared by ultrasonic-assisted impregnation and characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy with Energy-dispersive X-ray Spectroscopy (SEM/EDS). The adsorption isotherms of BT were also investigated.


2020 ◽  
Vol 9 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Yola Azli Perdana ◽  
Rahma Joni ◽  
Emriadi Emriadi ◽  
Hemansyah Aziz

Karbon aktif dari cangkang kelapa sawit sebagai bahan elektroda superkapasitor telah diteliti. Superkapasitor dirangkai dengan metoda plat/sandwich yang dipisahkan oleh separator. Untuk mendapatkan nilai kapasitansi yang besar dilakukan variasi jumlah aktivator terhadap karbon menggunakan aktivator KOH. Sifat fisikokimia dari karbon aktif diteliti dengan melakukan karakterisasi menggunakan XRD (X-Ray Diffraction), SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray) dan SAA (Surface Area Analyzer) dan sifat elektrokimianya diteliti dengan pengukuran CV (Cyclic Voltammetry). Karbon aktif dengan perbandingan 1:5 memiliki luas permukaan yang paling besar yaitu 793,326 m2/g dan nilai kapasitansi spesifik tertinggi yaitu 99,151 F/g. The activated carbon from oil palm kernel shell as an electrode material for supercapacitors has been investigated. The supercapasitor was assembled by plate/sandwich methods. Both electrodes were separated by using a separator. To increase the capacitancy value, variations in the number of activators on carbon were carried out using KOH activator. The physicochemical properties of activated carbon were investigated by characterizing using XRD (X-Ray Diffraction), SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray) and SAA (Surface Area Analyzer) and the electrochemical properties were investigated by measuring CV (Cyclic Voltammetry). Activated carbon with a ratio of 1:5 has the largest surface area of 793,326 m2/g and the highest specific capacitance value is 99,151 F/g.Keywords: activated carbon, supercapasitor, activator, surface area, specific capacitance


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ledwaba Harry Moloto ◽  
Sunnyboy Stanley Manzini ◽  
Ezekiel Dixon Dikio

The reduction behaviour of magnetite using graphite under ball-milling conditions (using a planetary mono mill, Fritsch Pulverisette 6) has been investigated. The reaction of magnetite and graphite at different milling conditions leads to the formation of Fe2+and Fe3+species, the former increasing at the expense of Fe3O4. Fe3O4completely disappeared after a ball to powder ratio of 50 : 1 and beyond. The Fe2+species were confirmed to be due to FeO using Mössbauer Spectroscopy and X-ray diffraction techniques. Scanning electron microscopy and transmission electron microscopy analyses confirm the reduction of magnetite to wüstite.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


2016 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Budi Setiawan ◽  
Erizal Zaini ◽  
Salman Umar

Sebuah penelitian tentang sistem dispersi padat dari asiklovir dengan poloxamer 188 telah dilakukan formulasi dengan pencampuran secara fisika dengan rasio 1 : 1, 1 : 3, 1 : 5 dan dispersi padat 1 : 1, 1 : 3, 1 : 5 dan penggilingan 1:1 sebagai pembanding. Dispersi padat dibuat menggunakan metode pencairan (fusi), yang digabung dengan poloxamer 188 pada hotplate kemudian asiklovir dimasukkan ke dalam hasil poloxamer 188 lalu di kocok hingga membentuk masa homogen. Semua formula yang terbentuk termasuk asiklovir poloxamer 188 murni dianalisis karakterisasinya dengan Differential Thermal Analysis (DTA), X-ray Diffraction, Scanning Electron Microscopy (SEM), dan Fourier Transform Infrared (FTIR), kemudian pengambilan dilakukan  (penentuan kadar) mengunakan spektrofotometer UV pada panjang gelombang 257,08 nm dan uji laju disolusi dengan aquadest bebas CO2 menggunakan metode dayung. Hasil pengambilan  (penentuan kadar) menunjukkan bahwa semua formula memenuhi persyaratan farmakope Amerika edisi 30 dan farmakope Indonesia edisi 4 yaitu 95-110%. Sedangkan hasil uji laju disolusi untuk campuran fisik 1: 1, dan dispersi padat 1: 1, dan penggilingan 1: 1 menunjukkan peningkatan yang nyata dibandingkan asiklovir murni. Hal ini juga dapat dilihat dari hasil perhitungan statistik  menggunakan analisis varian satu arah  SPSS 17.


Sign in / Sign up

Export Citation Format

Share Document