scholarly journals The Influence of CO2 Laser Beam Power Output and Scanning Speed on Surface Quality of Norway Maple (Acer platanoides)

BioResources ◽  
2018 ◽  
Vol 13 (4) ◽  
Author(s):  
Lidia Gurau ◽  
Adrian Petru
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abid Ullah ◽  
HengAn Wu ◽  
Asif Ur Rehman ◽  
YinBo Zhu ◽  
Tingting Liu ◽  
...  

Purpose The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the effects of laser parameters and selective oxidation of Titanium (mixed with TiO2) on the microstructure, surface quality and melting state of Titania. The causes of several L-PBF parts defects were thoroughly analyzed. Design/methodology/approach Laser power and scanning speed were varied within a specific range (50–125 W and 170–200 mm/s, respectively). Furthermore, varying loads of Ti (1%, 3%, 5% and 15%) were mixed with TiO2, which was selectively oxidized with laser beam in the presence of oxygen environment. Findings Part defects such as cracks, pores and uneven grains growth were widely reduced in TiO2 L-PBF specimens. Increasing the laser power and decreasing the scanning speed shown significant improvements in the surface morphology of TiO2 ceramics. The amount of Ti material was fully melted and simultaneously changed into TiO2 by the application of the laser beam. The selective oxidation of Ti material also improved the melting condition, microstructure and surface quality of the specimens. Originality/value TiO2 ceramic specimens were produced through L-PBF process. Increasing the laser power and decreasing the scanning speed is an effective way to sufficiently melt the powders and reduce parts defects. Selective oxidation of Ti by a high power laser beam approach was used to improve the manufacturability of TiO2 specimens.


2016 ◽  
Vol 36 (1) ◽  
pp. 18-22 ◽  
Author(s):  
Dominika Panfil ◽  
Piotr Wach ◽  
Michał Kulka ◽  
Jerzy Michalski

Abstract In this paper, modification of nitrided layer by laser re-melting was presented. The nitriding process has many advantageous properties. Controlled gas nitriding was carried out on 42CrMo4 steel. As a consequence of this process, ε+γ’ compound zone and diffusion zone were produced at the surface. Next, the nitrided layer was laser remelted using TRUMPF TLF 2600 Turbo CO2 laser. Laser tracks were arranged as single tracks with the use of various laser beam powers (P), ranging from 0.39 to 1.04 kW. The effects of laser beam power on the microstructure, dimensions of laser tracks and hardness profiles were analyzed. Laser treatment caused the decomposition of continuous compound zone at the surface and an increase in hardness of previously nitrided layer because of the appearance of martensite in re-melted and heat-affected zones


2014 ◽  
Vol 802 ◽  
pp. 334-337
Author(s):  
C.L. Santos ◽  
G. Vasconcelos ◽  
H.S. Oliveira ◽  
L.G. Oliveira ◽  
J.F. Azevedo ◽  
...  

This study shows the influence of the temperature in the Direct Forming Laser process (DFL) of 316L stainless steel metal powder. Results shows that an increasing in the sample surface temperature can improve the laser beam absorption in the DFL process. A pre-heating in the substrate and in the powder contributed to decrease the time to reach the melting point and to improve the surface roughness. This effect was investigated with constant lasers parameters (scanning speed and intensity) and a heating in the samples in the temperature range of 20oto 200oC. It was possible to evaluate the DFL process and to optimize the quality of the sample surface roughness. These results will benefit the knowledge of the DFL technology that can be applied in the development of turbine blades.


2020 ◽  
Vol 1012 ◽  
pp. 436-440
Author(s):  
Viviane Teleginski Mazur ◽  
Sílvia Rosa Nascimento ◽  
Marilei de Fátima Oliveira ◽  
Willer Cézar Braz ◽  
Correard Gilson Carlos de Castro ◽  
...  

Corrosion rate behavior of laser welded dual-phase galvanized steel, DP 600, has been assessed in comparison with the material without the laser weld, in 3.5% NaCl solution. Three combinations of both scanning speed and laser power parameters were selected, maintaining the thermal input of 30 J mm-1, calculated as the ratio between the laser beam power [W] and the scanning speed [mm s-1]. The corrosion studies included measurements of open circuit potential, micro and macro polarization, showing higher corrosion rates as scanning speed decreased. Optical microscopy showed the formation of a grain size refined morphology in the heat affected zone and fusion zone. A mechanism has been proposed to explain the corrosion behavior as a function of the laser parameters, which dictated the galvanized coating vaporization.


Sign in / Sign up

Export Citation Format

Share Document