http://www.cosmosscholars.com/journals/journal-of-translational-proteomics-research

2015 ◽  
Vol 2 ◽  
pp. 1-2
Author(s):  
Youhe Gao ◽  
Keyword(s):  
2019 ◽  
Vol 37 (11) ◽  
pp. 1135
Author(s):  
Xiaochao XIANG ◽  
Fenglong JIAO ◽  
Yangjun ZHANG ◽  
Xiaohong QIAN ◽  
Weijie QIN

2019 ◽  
Vol 37 (8) ◽  
pp. 788 ◽  
Author(s):  
Ye ZHOU ◽  
Zheyi LIU ◽  
Fangjun WANG

PRILOZI ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 5-36 ◽  
Author(s):  
Katarina Davalieva ◽  
Momir Polenakovic

Abstract Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. The introduction of prostate specific antigen (PSA) has greatly increased the number of men diagnosed with PCa but at the same time, as a result of the low specificity, led to overdiagnosis, resulting to unnecessary biopsies and high medical cost treatments. The primary goal in PCa research today is to find a biomarker or biomarker set for clear and effecttive diagnosis of PCa as well as for distinction between aggressive and indolent cancers. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, MALDI MS profiling, shotgun proteomics with label-based (ICAT, iTRAQ) and label-free (SWATH) quantification, MudPIT, CE-MS have been applied to the study of PCa in the past 15 years. Various biological samples, including tumor tissue, serum, plasma, urine, seminal plasma, prostatic secretions and prostatic-derived exosomes were analyzed with the aim of identifying diagnostic and prognostic biomarkers and developing a deeper understanding of the disease at the molecular level. This review is focused on the overall analysis of expression proteomics studies in the PCa field investigating all types of human samples in the search for diagnostics biomarkers. Emphasis is given on proteomics platforms used in biomarker discovery and characterization, explored sources for PCa biomarkers, proposed candidate biomarkers by comparative proteomics studies and the possible future clinical application of those candidate biomarkers in PCa screening and diagnosis. In addition, we review the specificity of the putative markers and existing challenges in the proteomics research of PCa.


2005 ◽  
Vol 09 (06) ◽  
pp. 224-226

Reliable and Fast Diagnosis of Influenza Virus. Agilent Technologies Introduces Industry's First HPLC-Chip/MS System for Proteomics Research.


Bioanalysis ◽  
2021 ◽  
Author(s):  
Zhenbin Zhang ◽  
Minyang Zheng ◽  
Yufen Zhao ◽  
Perry G Wang

Sample preparation and separation methods determine the sensitivity and the quantification accuracy of the proteomics analysis. This article covers a comprehensive review of the recent technique development of high-throughput and high-sensitivity sample preparation and separation methods in proteomics research.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Zheyu Zhang ◽  
Wenbo Wang ◽  
Ling Jin ◽  
Xin Cao ◽  
Gonghui Jian ◽  
...  

Yinchenwuling powder (YCL) is an effective traditional Chinese medicine formula to modulate lipid levels. In this study, we established hyperlipidemic rat models and treated them with YCL. The serum concentrations of lipid, malondialdehyde (MDA), endothelin-1 (ET-1), and calcitonin gene-related peptide (CGRP) were measured. Adventitia-free vascular proteins between hyperlipidemic rats and YCL-treated rats were identified using iTRAQ-based quantitative proteomics research approach. Proteins with 1.3-fold difference were analyzed through bioinformatics, and proteomic results were verified by Western blot. The results showed that the serum levels of TC, TG, LDL-C, ET-1, and MDA were significantly decreased, whereas the HDL-C and CGRP levels were significantly increased in the YCL-treated group. Proteomics technology identified 4,382 proteins, and 15 proteins were selected on the basis of their expression levels and bioinformatics. Of these proteins, 2 (Adipoq and Gsta1) were upregulated and 13 (C3, C4, C6, Cfh, Cfp, C8g, C8b, Lgals1, Fndc1, Fgb, Fgg, Kng1, and ApoH) were downregulated in the YCL-treated rats. Their functions were related to immunity, inflammation, coagulation and hemostasis, oxidation and antioxidation, and lipid metabolism and transport. The validated results of ApoH were consistent with the proteomics results. This study enhanced our understanding on the therapeutic effects and mechanism of YCL on hyperlipidemia.


2020 ◽  
Vol 48 (5) ◽  
pp. 1953-1966
Author(s):  
Lindsay K. Pino ◽  
Jacob Rose ◽  
Amy O'Broin ◽  
Samah Shah ◽  
Birgit Schilling

Research into the basic biology of human health and disease, as well as translational human research and clinical applications, all benefit from the growing accessibility and versatility of mass spectrometry (MS)-based proteomics. Although once limited in throughput and sensitivity, proteomic studies have quickly grown in scope and scale over the last decade due to significant advances in instrumentation, computational approaches, and bio-sample preparation. Here, we review these latest developments in MS and highlight how these techniques are used to study the mechanisms, diagnosis, and treatment of human diseases. We first describe recent groundbreaking technological advancements for MS-based proteomics, including novel data acquisition techniques and protein quantification approaches. Next, we describe innovations that enable the unprecedented depth of coverage in protein signaling and spatiotemporal protein distributions, including studies of post-translational modifications, protein turnover, and single-cell proteomics. Finally, we explore new workflows to investigate protein complexes and structures, and we present new approaches for protein–protein interaction studies and intact protein or top-down MS. While these approaches are only recently incipient, we anticipate that their use in biomedical MS proteomics research will offer actionable discoveries for the improvement of human health.


2003 ◽  
Vol 8 (2) ◽  
pp. 60-61
Author(s):  
Toshifumi Takao

Sign in / Sign up

Export Citation Format

Share Document