scholarly journals X-ray diffraction analysis of KY3F10 nanoparticles doped with Nd and preliminary studies for its use in high-dose radiation dosimetry

2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
Rodrigo Uchida Ichikawa ◽  
Horacio Marconi da Silva Matias Dantas Linhares ◽  
Andre Santos Barros Silva ◽  
Maria Ines Teixeira ◽  
Izilda Marcia Ranieri ◽  
...  

In this work, the structure and microstructure of Nd:KY3F10 nanoparticles was probed using X-ray synchrotron diffraction analysis. Rietveld refinement was applied to obtain cell parameters, atomic positions and atomic displacement factors to be compared with the ones found in literature. X-ray line profile methods were applied to determine mean crystallite size and crystallite size distribution. Thermoluminescent (TL) emission curves were measured for different radiation doses, from 0.10 kGy up to 10.0 kGy. Dose-response curves were obtained by area integration beneath the peaks from TL. The reproducibility of the results in this work has shown that this material can be considered a good dosimetric material.

Author(s):  
Ruyi Ding ◽  
Cui Xu ◽  
Xu Chen ◽  
Mengyun Bao ◽  
Xiaoting Qiu

The 2-carboxy-6-hydroxyoctahydroindole moiety is an essential residue for the antithrombotic activity of aeruginosins, which are a class of cyanobacteria-derived bioactive linear tetrapeptides. The biosynthetic pathway of the 2-carboxy-6-hydroxyoctahydroindole moiety has not yet been resolved. AerF was indicated to be involved in the biosynthesis of the 2-carboxy-6-hydroxyoctahydroindole moiety. This study reports the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of AerF fromMicrocystis aeruginosawith a C-terminal His6tag. The crystal diffracted to a maximum resolution of 1.38 Å and belonged to the tetragonal space groupP4322, with unit-cell parametersa=b= 101.581,c= 116.094 Å. The calculated Matthews coefficient and solvent content of the crystal were 2.47 Å3 Da−1and 50.32%, respectively. The initial model of the structure was obtained by the molecular-replacement method and refinement of the structure is in progress.


Author(s):  
Sanduo Zheng ◽  
Keqiong Ye

Eukaryotic ribosome synthesis requires a vast number of transiently associated factors. Mpp10, Imp3 and Imp4 form a protein complex in the 90S pre-ribosomal particle that conducts early processing of 18S rRNA. Here, a short fragment of Mpp10 was identified to associate with and increase the solubility of Imp3. An Imp3–Mpp10 complex was co-expressed, co-purified and co-crystallized. Preliminary X-ray diffraction analysis revealed that the crystal diffracted to 2.1 Å resolution and belonged to space groupP212121, with unit-cell parametersa= 51.6,b= 86.9,c= 88.7 Å.


Author(s):  
M. Rajasekar ◽  
K. Muthu ◽  
A. Aditya Prasad ◽  
R. Agilandeshwari ◽  
SP Meenakshisundaram

Single crystals of molybdenum-incorporated tris(thiourea)zinc(II) sulfate (MoZTS) are grown by the slow evaporation solution growth technique. Crystal composition as determined by single-crystal X-ray diffraction analysis reveals that it belongs to the orthorhombic system with space groupPca21and cell parametersa= 11.153 (2),b= 7.7691 (14),c= 15.408 (3) Å,V= 1335.14 (4) Å3andZ= 4. The surface morphological changes are studied by scanning electron microscopy. The vibrational patterns in FT–IR are used to identify the functional group and TGA/DTA (thermogravimetric analysis/differential thermal analysis) indicates the stability of the material. The structure and the crystallinity of the material were confirmed by powder X-ray diffraction analysis and the simulated X-ray diffraction (XRD) closely matches the experimental one with varied intensity patterns. The band gap energy is estimated using diffuse reflectance data by the application of the Kubelka–Munk algorithm. The relative second harmonic generation (SHG) efficiency measurements reveal that MoZTS has an efficiency comparable to that of tris(thiourea)zinc(II) sulfate (ZTS). Hirshfeld surfaces were derived using single-crystal X-ray diffraction data. Investigation of the intermolecular interactions and crystal packingviaHirshfeld surface analysis reveal that the close contacts are associated with strong interactions. Intermolecular interactions as revealed by the fingerprint plot and close packing could be the possible reasons for facile charge transfer leading to SHG activity.


2014 ◽  
Vol 70 (12) ◽  
pp. 1683-1687 ◽  
Author(s):  
Hanbin Jeong ◽  
Byoung Heon Kang ◽  
Changwook Lee

Hsp90 is a molecular chaperone responsible for the assembly and regulation of many cellular client proteins. In particular, Trap1, a mitochondrial Hsp90 homologue, plays a pivotal role in maintaining mitochondrial integrity, protecting against apoptosis in cancer cells. The N (N-terminal)-M (middle) domain of human Trap1 was crystallized in complex with Hsp90 inhibitors (PU-H71 and BIIB-021) by the hanging-drop vapour-diffusion method at pH 6.5 and 293 K using 15% PEG 8K as a precipitant. Diffraction data were collected from crystals of the Trap1–PU-H71 (2.7 Å) and Trap1–BIIB-021 (3.1 Å) complexes to high resolution at a synchrotron-radiation source. Preliminary X-ray diffraction analysis revealed that both crystals belonged to space groupP41212 orP43212, with unit-cell parametersa=b= 69.2,c= 252.5 Å, and contained one molecule per asymmetric unit according to Matthews coefficient calculations.


Author(s):  
Pilar Redondo ◽  
Nekane Merino ◽  
Maider Villate ◽  
Francisco J. Blanco ◽  
Guillermo Montoya ◽  
...  

Homing endonucleases are highly specific DNA-cleaving enzymes that recognize long stretches of DNA. The engineering of these enzymes provides novel instruments for genome modification in a wide range of fields, including gene targeting, by inducing specific double-strand breaks. I-CvuI is a homing endonuclease from the green algaChlorella vulgaris. This enzyme was purified after overexpression inEscherichia coli. Crystallization experiments of I-CvuI in complex with its DNA target in the presence of Mg2+yielded crystals suitable for X-ray diffraction analysis. The crystals belonged to the orthorhombic space groupP212121, with unit-cell parametersa= 62.83,b= 83.56,c= 94.40 Å. The self-rotation function and the Matthews coefficient suggested the presence of one protein–DNA complex per asymmetric unit. The crystals diffracted to a resolution limit of 1.9 Å using synchrotron radiation.


Author(s):  
Jintang Lei ◽  
Xun Cai ◽  
Xiaodan Ma ◽  
Li Zhang ◽  
Yuwen Li ◽  
...  

The Bam machinery, which is highly conserved from bacteria to humans, is well recognized as the apparatus responsible for the insertion and folding of most outer membrane proteins in Gram-negative bacteria. InEscherichia coli, the Bam machinery consists of five components (i.e.BamA, BamB, BamC, BamD and BamE). In comparison, there are only four partners inHaemophilus influenzae: a BamB homologue is not found in its genome. In this study, the recombinant expression, purification, crystallization and preliminary X-ray diffraction analysis ofH. influenzaeBamD and BamCD complex are reported. The genes encoding BamC and BamD were cloned into a pET vector and expressed inE. coli. Affinity, ion-exchange and gel-filtration chromatography were used to obtain high-purity protein for further crystallographic characterization. Using the hanging-drop vapour-diffusion technique, BamD and BamCD protein crystals of suitable size were obtained using protein concentrations of 70 and 50 mg ml−1, respectively. Preliminary X-ray diffraction analysis showed that the BamD crystals diffracted to 4.0 Å resolution and belonged to space groupP212121, with unit-cell parametersa= 54.5,b= 130.5,c= 154.7 Å. The BamCD crystals diffracted to 3.8 Å resolution and belonged to space groupI212121, with unit-cell parametersa= 101.6,b= 114.1,c= 234.9 Å.


Author(s):  
Kate J Putman ◽  
Matthew R Rowles ◽  
Nigel A Marks ◽  
Irene Suarez-Martinez

1962 ◽  
Vol 33 (2) ◽  
pp. 708-712 ◽  
Author(s):  
A. J. Opinsky ◽  
J. L. Orehotsky ◽  
C. W. W. Hoffman

2014 ◽  
Vol 70 (10) ◽  
pp. 1389-1393 ◽  
Author(s):  
Mulu Y. Lubula ◽  
Amanda Poplawaski ◽  
Karen C. Glass

The bromodomain-PHD finger protein 1 (BRPF1) is an essential subunit of the monocytic leukemia zinc (MOZ) histone acetyltransferase (HAT) complex and is required for complex formation and enzymatic activation. BRPF1 contains a structurally conserved bromodomain, which recognizes specific acetyllysine residues on histone proteins. The MOZ HAT plays a direct role in hematopoiesis, and deregulation of its activity is linked to the development of acute myeloid leukemia. However, the molecular mechanism of histone-ligand recognition by the BRPF1 bromodomain is currently unknown. The 117-amino-acid BRPF1 bromodomain was overexpressed inEscherichia coliand purified to homogeneity. Crystallization experiments of the BRPF1 bromodomain in complex with its H4K12ac and H2AK5ac histone ligands yielded crystals that were suitable for high-resolution X-ray diffraction analysis. The BRPF1 bromodomain–H4K12ac crystals belonged to the tetragonal space groupP43212, with unit-cell parametersa= 75.1,b= 75.1,c= 86.3 Å, and diffracted to a resolution of 1.94 Å. The BRPF1 bromodomain–H2AK5ac crystals grew in the monoclinic space groupP21, with unit-cell parametersa= 60.9,b= 55.6,c= 82.1 Å, β = 93.6°, and diffracted to a resolution of 1.80 Å. Complete data sets were collected from both crystal forms using synchrotron radiation on beamline X29 at Brookhaven National Laboratory (BNL).


Sign in / Sign up

Export Citation Format

Share Document