scholarly journals Purification and characterization of versatile peroxidase from Lentinus squarrosulus and its application in biodegradation of lignocellulosics

2019 ◽  
Vol 6 (6) ◽  
pp. 280-286
Author(s):  
Aarthi Ravichandran ◽  
Ramya G Rao ◽  
Maheswarappa Gopinath ◽  
Manpal Sridhar

Versatile Peroxidases are high redox potential peroxidases capable of degrading lignin of lignocellulosic crop residues. Hence Versatile Peroxidases are prominent biocatalysts in upgrading lignocellulosic biomass for biotechnological applications. In the interest of exploiting the potential of Versatile Peroxidase in improving the digestibility of crop residues through delignification, a novel Versatile Peroxidase was purified and characterized from the immobilized cultures of native isolate Lentinus squarrosulus. The enzyme was purified with a specific activity of 62 U/mg through ion exchange and gel filtration chromatographic procedures. The enzyme possessed high affinity towards RB5 and manganese with a Km value of 6.84 µM for RB5 and 0.15 mM for manganese. The optimum temperature for oxidation was identified to be 30°C and optimum pH for manganese and RB5 oxidation was 5 and 3 respectively. Reactivity of the enzyme towards diverse substrates was investigated besides studying the effect of metal ions and inhibitors on RB5 oxidation. The enhanced potential of this purified Versatile Peroxidase in biodegradation of crop residues was demonstrated through augmentation of digestibility of finger millet and paddy straws by 20%.The results demonstrated that Versatile Peroxidase from Lentinus squarrosulus is capable of enhancing the nutritive value of crop residues through delignification

2013 ◽  
Vol 10 (3) ◽  
pp. 844-853
Author(s):  
Baghdad Science Journal

Endoglucanase produced from Aspergillus flavus was purified by several steps including precipitation with 25 % ammonium sulphate followed by Ion –exchange chromatography, the obtained specific activity was 377.35 U/ mg protein, with a yield of 51.32 % .This step was followed by gel filtration chromatography (Sepharose -6B), when a value of specific activity was 400 U/ mg protein, with a yield of 48 %. Certain properties of this purified enzyme were investigated, the optimum pH of activity was 7 and the pH of its stability was 4.5, while the temperature stability was 40 °C for 60 min. The enzyme retained 100% of its original activity after incubation at 40 °C for 60 min; the optimum temperature for enzyme activity was 40 °C.


1986 ◽  
Vol 237 (2) ◽  
pp. 415-420 ◽  
Author(s):  
C R Goward ◽  
R Hartwell ◽  
T Atkinson ◽  
M D Scawen

Homogeneous glucokinase (EC 2.7.1.2) from the thermophile Bacillus stearothermophilus was isolated on the large scale by using four major steps: precipitation of extraneous material at pH 5.5, ion-exchange chromatography on DEAE-Sepharose, pseudo-affinity chromatography on Procion Brown H-3R-Sepharose 4B and gel filtration on Ultrogel AcA 34. The purified enzyme had a specific activity of about 330 units/mg of protein and was shown to exist as a dimer of subunit Mr 33,000. Kinetic parameters for the enzyme were determined with a variety of substrates. The glucokinase was highly specific for alpha-D-glucose, and the only other sugar substrate utilized was N-acetyl-alpha-D-glucosamine. The enzyme shows Michaelis-Menten kinetics, with a Km value of 150 microM for alpha-D-glucose. The glucokinase was maximally active at pH 9.0.


1982 ◽  
Vol 47 (4) ◽  
pp. 1139-1148 ◽  
Author(s):  
Karel Hauzer ◽  
Linda Servítová ◽  
Tomislav Barth ◽  
Karel Jošt

Post-proline endopeptidase was isolated from pig kidneys and partially purified. The procedure consisted of fractionation with ammonium sulphate, ion exchange chromatography on DEAE-Sephadex A-50, gel filtration on Sephadex G-200 and rechromatography on DEAE-Sephadex A-50. The preparation had 55 times higher specific activity than the crude extract and did not contain any contaminating enzymic activities. The enzyme cleaved a number of proline-containing peptides and was strictly specific in catalyzing the hydrolysis of the peptide bond on the carboxyl side of the proline residue. The optimum pH for the hydrolysis of the synthetic peptides benzyl-oxycarbonylglycyl-prolyl-leucyl-glycinamide and benzyloxycarbonyl-glycyl-proline β-naphtylamide was 7.8-8.0 and, in the case of benzyloxycarbonylglycyl-proline p-nitroanilide, 7.2 to 7.5. For the hydrolysis of the tetrapeptide benzyloxycarbonylglycyl-prolyl-leucyl-glycinamide, the Km value of 75 μ mol l-1 was obtained.


1992 ◽  
Vol 288 (2) ◽  
pp. 475-482 ◽  
Author(s):  
I Ishii-Karakasa ◽  
H Iwase ◽  
K Hotta ◽  
Y Tanaka ◽  
S Omura

For the purification of a new type of endo-alpha-N-acetylgalactosaminidase from the culture medium of Streptomyces sp. OH-11242 (endo-GalNAc-ase-S) [Iwase, Ishii, Ishihara, Tanaka, Omura & Hotta (1988) Biochem. Biophys. Res. Commun. 151, 422-428], a method for assaying enzyme activity was established. Using purified pig gastric mucus glycoprotein (PGM) as the substrate, oligosaccharides liberated from PGM were pyridylaminated, and the reducing terminal sugars of oligosaccharides larger than Gal beta 1-3GalNAc were analysed by h.p.1.c. The crude enzyme of endo-GalNAc-ase-S was prepared as an 80% (w/v) ammonium sulphate precipitate from the concentrated culture medium. The enzyme was partially purified by gel chromatofocusing and subsequent DEAE-Toyopearl chromatography. Endo-enzyme activity eluted around pI 4.8 on a gel chromatofocusing column and eluted with 0.19-0.25 M-NaCl on a DEAE-Toyopearl column. In the enzyme fraction obtained, no exo-glycosidases or proteases could be detected. The molecular mass of the enzyme was estimated as 105 kDa by gel filtration, and the optimum pH was 5.5. Endo-GalNAc-ase-S hydrolysed the O-glycosidic linkage between GalNAc and Ser (Thr) in 3H-labelled and unlabelled asialofetuin, liberating both the disaccharide (Gal beta 1-3GalNAc) and the tetrasaccharide [Gal beta 1-3 (Gal beta 1-4GlcNAc beta 1-6)GalNAc]. When endo-alpha-N-acetylgalactosaminidase from Alcaligenes sp. (endo-GalNac-ase-A) was incubated with 3H-labelled and unlabelled asialofetuin, only the disaccharide (Gal beta 1-3GalNAc) was liberated.


1980 ◽  
Vol 191 (1) ◽  
pp. 117-124 ◽  
Author(s):  
R Zecher ◽  
H U Wolf

Human erythrocytes contain a phosphatase that is highly specific for phosphoglycollate. It shows optimum pH of 6.7 and has Km 1 mM for phosphoglycollate. The molecular weight appears to be about 72000. The enzyme is a dimeric molecule having subunits of mol. wt. about 35000. It could be purified approx. 4000-fold up to a specific activity of 5.98 units/mg of protein. The activity of the enzyme is Mg2+-dependent. Co2+, and to a smaller extent Mn2+, may substitute for Mg2+. Half-maximum inhibition of the phosphatase by 5,5′-dithiobis-(2-nitrobenzoate), EDTA and NaF is obtained at 0.5 microM, 1 mM and 4 mM respectively. Moreover, it needs a univalent cation for optimum activity. Phosphoglycollate phosphatase is a cytoplasmic enzyme. Approx. 5% of its total activity is membrane-associated. This part of activity can be approx. 70% solubilized by freezing, thawing and treatment with 0.25% Triton X-100.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hanaa H. Abd El Baky ◽  
Gamal S. El Baroty

L-asparaginase (L-AsnA) is widely distributed among microorganisms and has important applications in medicine and in food technology sectors. Therefore, the ability of the production, purification, and characterization of AsnA fromSpirulina maxima(SM) were tested. SM cultures grown in Zarrouk medium containing different N2(in NaNO3form) concentrations (1.25, 2.50, and 5.0 g/L) for 18 days contained a significant various quantity of dry biomass yields and AsnA enzyme levels. MS L-AsnA activity was found to be directly proportional to the N2concentration. The cultures of SM at large scales (300 L medium, 5 g/L N2) showed a high AsnA enzyme activity (898 IU), total protein (405 mg/g), specific enzyme activity (2.21 IU/mg protein), and enzyme yield (51.28 IU/L) compared with those in low N2cultures. The partial purification of crude MS AsnA enzyme achieved by 80% ammonium sulfate AS precipitated and CM-Sephadex C-200 gel filtration led to increases in the purification of enzyme with 5.28 and 10.91 times as great as that in SM crude enzymes. Optimum pH and temperature of purified AsnA for the hydrolyzate were 8.5 and 37 ± 0.2°C, respectively. To the best of our knowledge, this is the first report on L-asparaginase production inS. maxima.


1981 ◽  
Vol 60 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Naotika Toki ◽  
Hiroyuki Sumi ◽  
Sumiyoshi Takasugi

1. A kallikrein-like enzyme in plasma of patients with acute pancreatitis was further purified by successive hydroxyapatite/cellulose and Sepharose-4B column chromatography. 2. By these procedures 0.26 mg of purified enzyme with a specific activity of 215 S-2266 chromozyme units/mg of protein was obtained from 10 ml of original plasma. 3. The purified material was homogeneous as ascertained by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and had an apparent molecular weight of 31 000 as measured by gel filtration on Sephadex G-200. 4. It was confirmed immunologically that this enzyme was pancreatic kallikrein, which is distinct from plasma kallikrein, and that it could combine with α2-macroglobulin only in the presence of trypsin.


2010 ◽  
Vol 4 (2) ◽  
pp. 78-85
Author(s):  
Jasim M. Awdaa

Inulinase was produced from local isolate of Aspergillus niger J3. The inulinase was purified by two steps included precipitation by amonium sulphate at (30-80) % sa-turation and gel filtration on sephadex G100. The final purification folds and the yield of the enzyme were 3.15 times and 28.24%, respectively. The purified enzyme has the following characteristics: The optimum pH of the enzyme activity was 5.5. The enzyme was most stable at pH (4.5 - 6). The optimum temperature for its activity was 45c. The enzyme retained its original activity when incubates at (30-55) c for 20 minutes. Mercury chloride inhibited the enzyme completely at concentration of 10mM, cupper sulphate and calisium chloride inhibited the enzyme at concentrations of 85% and 7% respectively. It was revealed that the enzyme had the efficiency to hydrolyze 87% of 5% inulin solution when treated at 45c for 120 min.


1979 ◽  
Vol 42 (05) ◽  
pp. 1536-1547
Author(s):  
Hsin Fu Chen ◽  
Masao Nakabayashi ◽  
Kazuo Satoh ◽  
Shoichi Sakamoto

SummaryA new method is described for the preparation of highly purified human plasminogen and plasmin with specific activity of 32 CTA units per mg of protein. With this method, the purification of the urinary plasminogen + plasmin antigenic materials from patients with chronic glomerulonephritis, disseminated intravascular coagulation syndrome and severe toxemia of pregnancy was performed, and the resulting highly purified proenzyme and enzyme were analyzed by immunoelectrophoresis, separative agar electrophoresis, gel filtration and SDS-gel electrophoresis.Our findings indicated that urinary plasmin reflects more closely the extent of intraglomerular fibrinolysis, while urinary plasminogen reflects non-selective proteinuria in patients with chronic glomerulonephritis or severe toxemia of pregnancy.


2011 ◽  
Vol 83 (2) ◽  
pp. 599-609 ◽  
Author(s):  
Amanda R. Sena ◽  
Gildomar L.V. Júnior ◽  
Aristóteles Góes Neto ◽  
Alex G. Taranto ◽  
Carlos P. Pirovani ◽  
...  

The enzyme glucanase from Moniliophthora perniciosa was produced in liquid medium and purified from the culture supernatant. A multivariate statistical approach (Response Surface Methodology - RSM) was employed to evaluate the effect of variables, including inducer (yeast extract) and fermentation time, on secreted glucanase activities M. perniciosa detected in the culture medium. The crude enzyme present in the supernatant was purified in two steps: precipitation with ammonium sulfate (70%) and gel filtration chromatography on Sephacryl S-200. The best inducer and fermentation time for glucanase activities were 5.9 g L-1 and 13 days, respectively. The results revealed three different isoforms (GLUI, GLUII and GLUIII) with purification factors of 4.33, 1.86 and 3.03, respectively. The partially purified enzymatic extract showed an optimum pH of 5.0 and an optimum temperature of 40°C. The enzymatic activity increased in the presence of KCl at all concentrations studied. The glucanase activity was highest in the presence of 0.2 M NaCl. The enzyme showed high thermal stability, losing only 10.20% of its specific activity after 40 minutes of incubation at 90°C. A purified enzyme with relatively good thermostability that is stable at low pH might be used in future industrial applications.


Sign in / Sign up

Export Citation Format

Share Document