scholarly journals Adaptation of gas-dynamic characteristic arrays to automated ballistics support of spacecraft flight

2021 ◽  
Vol 2021 (4) ◽  
pp. 89-103
Author(s):  
T.H. Smila ◽  
◽  
L.L. Pecherytsia ◽  

The current level of the design and use of new-generation spacecraft calls for a maximally automated ballistics support of engineering developments. An integral part of the solution of this problem is the development of an effective tool to adapt discrete functions of gas-dynamic characteristics to the solution of various problems that arise in the development and use of space complexes. Simplifying the use of bulky information arrays together with improving the accuracy of approximation of key coefficients will significantly improve the ballistics support quality. The aim of this work is to choose an optimum method for the approximation of a discrete function of two variable spacecraft aerodynamic characteristics. Based on the analysis of the advantages and drawbacks of basic methods of approximation by two fitting criteria: the maximum error and the root-mean-square deviation, recommendations on this choice were made. The methods were assessed by the example of the aerodynamic coefficients of the Sich-2M spacecraft’s simplified geometrical model tabulated as a function of the spacecraft orientation angles relative to the incident flow velocity. Multiparameter numerical studies were conducted for different approximation methods with varying the parameters of the approximation types under consideration and the approximation grid density. It was found that increasing the number of nodes of an input array does not always improve the accuracy of approximation. The node arrangement exerts a greater effect on the approximation quality. It was established that the most easily implementable method among those considered is a step interpolation, whose advantages are simplicity, quickness, and limitless possibilities in accuracy improvement, while its significant drawbacks are the lack of an analytical description and the dependence of the accuracy on the grid density. It was shown that spline functions feature the best approximating properties in comparison with other mathematical models. A polynomial approximation or any approximation by a general form function provide an analytical description with a single approximating function, but their accuracy of approximation is not so high as that provided by splines. It was found that there exists no approximation method that would be best by all criteria taken together: each method has some advantages, but at the same time, it has significant drawbacks too. An optimum approximation method is chosen according to the features of the problem, the priorities in approximation requirements, the required degree of approximation, and the initial data organization method.

2014 ◽  
Vol 1016 ◽  
pp. 85-89 ◽  
Author(s):  
Grigoriy Sterling ◽  
Pavel Prikhodko ◽  
Evgeny Burnaev ◽  
Mikhail Belyaev ◽  
Stephane Grihon

We present two level approach to build accurate approximations for Reserve Factors dependency on loads for composite stiffened panels. Such dependency is continuous non-smooth function with complex form plateaux regions (i.e. regions where function has zero gradient), defined on low dimensional grids. The main problem that arises if one tries to construct global approximation in such case is the occurrence of Gibbs effect (i.e. harmonic oscillations of prediction) near the borders of plateaux that may significantly deteriorate approximation quality. Viable existing solution: approximation based on linear triangular interpolation avoids oscillations, but unlike the proposed approach it provides model that is not smooth outside plateaux regions and generally requires larger sample size to achieve same accuracy of approximation.


Author(s):  
Denis Igorevich Bevza ◽  
Sergey Nikolaevich Valiulin ◽  
Oleg Petrovich Shuraev

The analysis of the numerical modeling results of gas dynamics in the ducts of the compact exhaust boiler is continued. Currently, there have been done three calculations for the same geometrical model; these calculations have different input speed values, as well as different methods of setting speed. It’s confirmed that in case of continuation of the original calculation with changed boundary condition (speed) in the inlet cross section the results coincide with results of calculation where originally set speed was the same. Thus, it becomes possible to perform several variants of calculations with the same geometry, but with different speed in one session (with minimum correction of initial data). So, the time of setting new temperature mode and the value of gas-dynamic resistance is reduced. Therefore, the time for preparing and carrying out the numerical experiment can be reduced. The influence of input speed on temperature field and hydrodynamic losses in exhaust boiler have been analyzed.


Author(s):  
Антон Валерьевич Балалаев ◽  
Екатерина Викторовна Балалаева ◽  
Юрий Юрьевич Терещенко

Modern trends in the global aircraft industry are prompting aircraft engine engineers to create and develop various methods to improve the aerodynamic characteristics of turbomachines. The urgent need to improve the efficiency of new generation engines leads to a rapid increase in the bypass ratio of engines, which requires the development of fans with large diametrical dimensions and high aerodynamic perfection. Boundary layer control in turbomachines using tandem blade rows is one of the most promising ways to improve the aerodynamic characteristics of aircraft engine fans with a high bypass ratio. The work aims to evaluate the aerodynamic characteristics of a fan with a tandem impeller for a turbofan engine. Two fan impellers were investigated: a single-row and an equivalent tandem-row (the equivalence was ensured by the equality of the structural angles of the flow inlet and outlet and the equality of the chord of the profiles). The blade row consisted of 33 blades, the tip diameter at the inlet to the impeller was 2.37 m, the hub diameter was 0.652 m. The flow was simulated in the range of axial velocity at the inlet from 80 to 200 m/s at a relative rotor speed of 0.65, 0.85, and 0.9. For the investigated tandem fan impeller, the chord of the first row was 60% of the total chord of the profile, the length of the slotted channel was 10% of the total chord. The flow was simulated using a numerical experiment. When closing the system of Navier-Stokes equations, Menter's SST turbulence model was used. The computational grid is unstructured, with an adaptation of the boundary layer. The work shows that the use of a tandem impeller will improve the aerodynamic characteristics of the fan. As a result of the study, it was found that the pressure ratio in a fan with tandem impeller increases from 0.32 to 20% for an operating mode at a relative rotor speed of n=0.65, n=0.85, and n=0.9 in the range of values of the gas-dynamic flow rate function q (λ)=0.4...1. The greatest growth is observed on the left branches of the pressure lines. The obtained data on the efficiency of a fan with a tandem impeller showed that in the range of values of the gas-dynamic flow rate function q(λ)=0.4...0.6 and q(λ)=0.76...0.98 a tandem impeller is higher than the efficiency of a fan with a single-row impeller, for values of the gas-dynamic flow function q(λ)=0.64...0.76 - the efficiency of a fan with a tandem impeller is 4% less than the efficiency of a fan with a single-row impeller.


2021 ◽  
pp. 1-24
Author(s):  
Ivan Anatolievich Shirokov

The results of numerical simulation of the external supersonic flow around a triangular wing with a blunted leading edge at Mach numbers 6 and 9, obtained in the framework of a quasi-gas dynamic (QGD) algorithm, are presented. The formulation of the problem at Mach number 9 corresponds to experiments in a wind tunnel. The values of the aerodynamic coefficients obtained at different angles of attack are in good agreement with the experimental data. It is shown that the modeling carried out using more detailed grids is more accurate.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Paulina Maślanka ◽  
Ryszard Korycki

AbstractThe paper is theoretically oriented. The main goal is to analyze the sensitivity of aerodynamic characteristics to the properties of the material used for paraglider wing. The paraglider of considerable dimensions is designed without stiffening elements. Thus, the covering material yields adequate pressure distribution between the external and internal parts of the wing. The problem is solved using a geometrical model approximated by the dimensionless coordinates of crucial points and smoothed by spline curves. The finite volume mesh is defined using the Ansys Meshing program. Numerical analysis uses five different covering materials, ranging from the air-impermeable covering to the covering subjected to hydrolytic—mechanical degradation. Optimization of properties of the covering material improves the lift force and the aerodynamic characteristics of the wing. Moreover, numerical modeling is more beneficial and efficient than prototype tests. The obtained pressure distributions and other parameters explain the aerodynamic safety of the paraglider during dynamic conditions of flight.


Author(s):  
J. M. Paque ◽  
R. Browning ◽  
P. L. King ◽  
P. Pianetta

Geological samples typically contain many minerals (phases) with multiple element compositions. A complete analytical description should give the number of phases present, the volume occupied by each phase in the bulk sample, the average and range of composition of each phase, and the bulk composition of the sample. A practical approach to providing such a complete description is from quantitative analysis of multi-elemental x-ray images.With the advances in recent years in the speed and storage capabilities of laboratory computers, large quantities of data can be efficiently manipulated. Commercial software and hardware presently available allow simultaneous collection of multiple x-ray images from a sample (up to 16 for the Kevex Delta system). Thus, high resolution x-ray images of the majority of the detectable elements in a sample can be collected. The use of statistical techniques, including principal component analysis (PCA), can provide insight into mineral phase composition and the distribution of minerals within a sample.


2020 ◽  
pp. 49-56
Author(s):  
Vitaly V. Volkov ◽  
Michael A. Suslin ◽  
Jamil U. Dumbolov

One of the conditions for ensuring the safety of air transport operation is the quality of aviation fuel refueled in aircraft. Fuel quality control is a multi-parameter task that includes monitoring the free moisture content. Regulatory documents establish the content of free water no more than 0.0015% by weight. It is developed a direct electrometric microwave resonance method for controlling free moisture in aviation fuels, which consists in changing the shape of the water drops by pressing them on a solid surface inside a cylindrical cavity resonator. This can dramatically increase dielectric losses. Analytical and experimental analysis of the proposed method is carried out. The control range from 0,5 to 30 μl of absolute volume of moisture in aviation fuels with a maximum error of not morethan 25 % is justified. The sensitivity of the proposed method for monitoring microwave losses in free moisture drops transformed into a thin layer by pressing is an order of magnitude greater than the sensitivity of the method for monitoring microwave losses in moisture drops on a solid surface in a resonator. The proposed method can be used as a basis for the development of devices for monitoring the free moisture of aviation fuels in the conditions of the airfield and laboratory. The direction of development of the method is shown.


Author(s):  
N. S. Aryaeva ◽  
E. V. Koptev-Dvornikov ◽  
D. A. Bychkov

A system of equations of thermobarometer for magnetite-silicate melt equilibrium was obtained by method of multidimensional statistics of 93 experimental data of a magnetite solubility in basaltic melts. Equations reproduce experimental data in a wide range of basalt compositions, temperatures and pressures with small errors. Verification of thermobarometers showed the maximum error in liquidus temperature reproducing does not exceed ±7 °C. The level of cumulative magnetite appearance in the vertical structure of Tsypringa, Kivakka, Burakovsky intrusions predicted with errors from ±10 to ±50 m.


Sign in / Sign up

Export Citation Format

Share Document