Study of the impregnation kinetics of basalt, carbon, oxide fibers with aluminum melts and its alloys

2021 ◽  
Vol 2021 (2) ◽  
pp. 114-125
Author(s):  
V. P. Krasovskyy ◽  
◽  
N. A. Krasovskaya ◽  

Wetting studies were performed by the sessile drop method using the capillary purification method of melt during the experiment in a vacuum of 2·10-3 Pa in the temperature range of 600–700 oC. The use of a dropper allows separate heating of the melt and the substrate, capillary and thermo vacuum cleaning of the melt, as well as thermo vacuum cleaning of the coatings surface. This is a model scheme of the impregnation process of non-metallic frames with matrix melts in the manufacture of composite materials by spontaneous free impregnation. Vanadium, copper and nickel metals were chosen for the coatings, which were sprayed on the materials by electron beam evaporation of metals in vacuum, and titanium, nickel powders for the coatings were used. The nature of the wetting angle dependence on the film thickness is a linear decrease in the angle with increasing film thickness. Studies have shown the possibility of using double films vanadium–copper, vanadium–nickel for the manufacture of composite materials from basalt fibers. The process of impregnation of basalt, carbon and oxide fibers with aluminum melts and its alloy with silicon in the temperature range 650–700 oC has been studied. The metal titanium, nickel powder coatings and films vanadium–copper, vanadium–nickel for the method of spontaneous free impregnation were used. Speciments of the composite material were obtained and the limit of destruction of these samples was determined. The bend strength of composites (basalt fiber 200 μm) is 270 MPa. Keywords: spontaneous free impregnation, composites, aluminium melts, basalt, carbon, oxide fibers, wetting, metal coatings and coverings.

2021 ◽  
Vol 2021 (2) ◽  
pp. 107-113
Author(s):  
V. P. Krasovskyy ◽  
◽  
N. A. Krasovskaya ◽  

The effect of metal coverings on wetting of oxide fibers by lead, bismuth, tin-lead-bismuth-cadmium alloy in vacuum 2·10-3 Pa in the temperature range 400–600 oC was studied by the sessile drop method using the capillary purification method of melt. Oxide fibers plaits that have been placed on a silicon oxide substrate as wetting substrates used. Titanium and nickel powders were used as metal coatings. There is no wetting. The contact angles are close to or greater than 90 degrees and only in the case of the lead-titanium melt system at 600 oC the value of the angle is 15, respectively. The use of a dropper allows separate heating of the melt and the substrate, capillary and thermo vacuum cleaning of the melt, as well as thermo vacuum cleaning of the coatings surface. This is a model scheme of the impregnation process of non-metallic frames with matrix melts in the manufacture of composite materials by spontaneous free impregnation. The metal titanium, nickel powder coatings for the method of spon¬taneous free impregnation was used. The study of the kinetics of impregnation of plaits of oxide fibers with melts of lead and tin-lead-bismuth-cadmium alloy was performed at 600–700 oC. The metal melt impregnates metal powders well. The rate of impregnation is quite high 1,1–1,8 mm/s. The obtained results allow the use of titanium pastes for the manufacture of composites from oxide materials with lead matrices. Composites were made. Oxide fiberglass made of CRT waste was selected as the reinforcing material. Lead was chosen as the matrix metal. Despite the fact that lead is a harmful material, but its use as a matrix phase for composites from the action of ionizing radiation is indispensable. Keywords: spontaneous free impregnation, composites, lead melts, oxide fibers, wetting, metal coverings.


2018 ◽  
Vol 765 ◽  
pp. 3-7
Author(s):  
Badin Damrongsak ◽  
Samutchar Coomkaew ◽  
Karnt Saengkaew ◽  
Ittipon Cheowanish ◽  
Pongsakorn Jantaratana

In this work, magnetic force microscopy (MFM) tips coated with a nickel thin-film were prepared and characterized for applications in the measurement of the magnetic write field. Nickel films with various thicknesses in a range of 20 – 80 nm were deposited on silicon substrates and silicon atomic force microscopy (AFM) tips by electron beam evaporation. Film surface morphologies and magnetic properties of the coated nickel films were investigated by using AFM and vibrating sample magnetometry (VSM). The rms roughness increased with the film thickness and was in a range between 0.1 and 0.3 nm. VSM results revealed that the mean coercive field of the nickel films was 20 Oe and there was an increase in the coercivity as the film thickness increased. In addition, the prepared MFM tips were evaluated for the tip response to the dc and ac magnetic field generated from perpendicular write heads. It was found that the MFM tip had the best response to the write field when coated with 60 nm thick nickel film. The coating thickness over 60 nm was inapplicable due to the cantilever bending caused by the film stress.


2021 ◽  
Vol 22 (5) ◽  
pp. 344-356
Author(s):  
Leo Gu Li ◽  
Yi Ouyang ◽  
Pui-Lam Ng ◽  
Kai-long Zeng ◽  
Albert Kwok Hung Kwan

2020 ◽  
Vol 229 ◽  
pp. 04002
Author(s):  
Matthew Gott ◽  
John Greene ◽  
Igor Pavlovsky ◽  
Richard Fink

Thin, isotopic 14C foils are of great interest to the nuclear physics community as neutron-rich targets. Historically, these foils have been extremely difficult to prepare and an effort is underway to make them readily available. The stock material of 14C available at Argonne contains a number of oxide impurities (SiO2, MgO, and Al2O3), which affect the composition and stability of the fabricated foil. A simple, robust method was developed (using natC as a surrogate) to purify the 14C material while minimizing loss and potential spread of the material. Thin foils were fabricated using the purified carbon, the unpurified carbon/oxide mix, and purchased high-purity carbon powder. SEM and EDS of the resulting foils was performed and the efficacy of this purification method was demonstrated.


2001 ◽  
Vol 691 ◽  
Author(s):  
T. Sakakibara ◽  
Y. Takigawa ◽  
K. Kurosawa

ABSTRACTWe prepared a series of (AgBiTe2)1−x(Ag2Te)x(0≤×≤1) composite materials by melt and cool down [1]. The Hall coefficient and the electrical conductivity were measured by the standard van der Pauw technique over the temperature range from 93K to 283K from which the Hall carrier mobility was calculated. Ag2Te had the highest mobility while the mobility of AgBiTe2was the lowest of all samples at 283K. However the mobility of the (AgBiTe2)0.125(Ag2Te)0.875composite material was higher than the motility of Ag2Te below 243K. It seems that a small second phase dispersed in the matrix phase is effective against the increased mobility.


2011 ◽  
Vol 374-377 ◽  
pp. 1837-1842
Author(s):  
Ming Tang ◽  
Jing Qi Li ◽  
Hong Liang Liu ◽  
Ning Chen

In order to obtain the high performance cement-based consistent materials,the enhancement effect of basalt fiber was studied to develop the building mortar with a high flexural strength . Three factors such as basalt fibers fraction,water-cement ratio and sand-lime ratio are studied on compressive and flexural strength on 7 days and 28 days through the orthogonal experimental design and statistical analysis. According to project needs, the best combination of flexural strength is optimized. The enhancement mechanism and damage features are analyzed and evaluated by SEM, the result shows that the basalt fiber as enhanced component have a very good flexural strength enhancement effect, the maximum increased rate will reach 2.91 times. The effect on the strength of different age period is remarkable with different fiber fraction which is far greater than the water-cement ratio and sand-lime ratio. Basalt fiber have better physical and mechanical properties and better alkali resistance, some performance are second only to carbon fiber, and the cost of basalt fiber is far lower than carbon fiber, So the basalt fiber have a broad application prospects in the field of cement-based composite materials.


Sign in / Sign up

Export Citation Format

Share Document