scholarly journals About the influence of features of fitness-functions on the convergence of the genetic algorithm

2020 ◽  
pp. 362-367
Author(s):  
I.O. Lukianov ◽  
◽  
F.A. Lytvynenko ◽  

The adaptive capabilities of a parallel version of a multipopulation genetic algorithm are considered depending on the characteristics of certain classes of fitness-functions. Ways are proposed to increase the rate of convergence to the optimal solution based on effective control of algorithm parameters and strategies for the exchange of chromosome-solutions between populations. The results of computer experiments with the optimization of fitness-functions with various ratios of insignificant and significant factors are presented. The dependence of the convergence rate of the algorithm in the presence of a random effect on the values of fitness-functions is studied.

2019 ◽  
Vol 13 (4) ◽  
pp. 416-423 ◽  
Author(s):  
Jingmei Li ◽  
Qiao Tian ◽  
Fangyuan Zheng ◽  
Weifei Wu

Background: Patents suggest that efficient hybrid information scheduling algorithm is critical to achieve high performance for heterogeneous multi-core processors. Because the commonly used list scheduling algorithm obtains the approximate optimal solution, and the genetic algorithm is easy to converge to the local optimal solution and the convergence rate is slow. Methods: To solve the above two problems, the thesis proposes a hybrid algorithm integrating list scheduling and genetic algorithm. Firstly, in the task priority calculation phase of the list scheduling algorithm, the total cost of the current task node to the exit node and the differences of its execution cost on different processor cores are taken into account when constructing the task scheduling list, then the task insertion method is used in the task allocation phase, thus obtaining a better scheduling sequence. Secondly, the pre-acquired scheduling sequence is added to the initial population of the genetic algorithm, and then a dynamic selection strategy based on fitness value is adopted in the phase of evolution. Finally, the cross and mutation probability in the genetic algorithm is improved to avoid premature phenomenon. Results: With a series of simulation experiments, the proposed algorithm is proved to have a faster convergence rate and a higher optimal solution quality. Conclusion: The experimental results show that the ICLGA has the highest quality of the optimal solution than CPOP and GA, and the convergence rate of ICLGA is faster than that of GA.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yan Zeng

The existing social talent governance algorithms have a number of issues such as slow convergence rate, relatively low data accuracy, recall rate, and low anti-interference. To address these problems, this paper proposes a research on social talent governance algorithm based on genetic algorithm. We discuss the difference between the traditional and the genetic algorithms and determine the implementation process of genetic algorithm. On this basis, the excellent individuals are determined by independent computing fitness, and the initialization population is designed according to the individual similarity threshold. After the population is defined, the roulette and deterministic sampling selection method are integrated to clarify the selection calculation process. Based on the calculation results, we design the crossover operator by segmented single-point crossover between individuals. The mutation operator is designed by segmented mutation of different gene segments according to the calculation results. The results are incorporated into the simulated annealing acceptance probability to conduct simulated annealing for the individuals after the cross-mutation operation and set relevant conditions after the end of the algorithm. We seek the optimal solution of the data within the number of iterations and finally realize the whole process of social talent governance algorithm. The experimental results show that the proposed algorithm has fast convergence rate, high data precision and recall, and has certain feasibility.


Author(s):  
Ge Weiqing ◽  
Cui Yanru

Background: In order to make up for the shortcomings of the traditional algorithm, Min-Min and Max-Min algorithm are combined on the basis of the traditional genetic algorithm. Methods: In this paper, a new cloud computing task scheduling algorithm is proposed, which introduces Min-Min and Max-Min algorithm to generate initialization population, and selects task completion time and load balancing as double fitness functions, which improves the quality of initialization population, algorithm search ability and convergence speed. Results: The simulation results show that the algorithm is superior to the traditional genetic algorithm and is an effective cloud computing task scheduling algorithm. Conclusion: Finally, this paper proposes the possibility of the fusion of the two quadratively improved algorithms and completes the preliminary fusion of the algorithm, but the simulation results of the new algorithm are not ideal and need to be further studied.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 514
Author(s):  
Leonardo Bayas-Jiménez ◽  
F. Javier Martínez-Solano ◽  
Pedro L. Iglesias-Rey ◽  
Daniel Mora-Melia ◽  
Vicente S. Fuertes-Miquel

A problem for drainage systems managers is the increase in extreme rain events that are increasing in various parts of the world. Their occurrence produces hydraulic overload in the drainage system and consequently floods. Adapting the existing infrastructure to be able to receive extreme rains without generating consequences for cities’ inhabitants has become a necessity. This research shows a new way to improve drainage systems with minimal investment costs, using for this purpose a novel methodology that considers the inclusion of hydraulic control elements in the network, the installation of storm tanks and the replacement of pipes. The presented methodology uses the Storm Water Management Model for the hydraulic analysis of the network and a modified Genetic Algorithm to optimize the network. In this algorithm, called the Pseudo-Genetic Algorithm, the coding of the chromosomes is integral and has been used in previous studies of hydraulic optimization. This work evaluates the cost of the required infrastructure and the damage caused by floods to find the optimal solution. The main conclusion of this study is that the inclusion of hydraulic controls can reduce the cost of network rehabilitation and decrease flood levels.


2021 ◽  
Vol 16 (5) ◽  
pp. 1186-1216
Author(s):  
Nikola Simkova ◽  
Zdenek Smutny

An opportunity to resolve disputes as an out-of-court settlement through computer-mediated communication is usually easier, faster, and cheaper than filing an action in court. Artificial intelligence and law (AI & Law) research has gained importance in this area. The article presents a design of the E-NeGotiAtion method for assisted negotiation in business to business (B2B) relationships, which uses a genetic algorithm for selecting the most appropriate solution(s). The aim of the article is to present how the method is designed and contribute to knowledge on online dispute resolution (ODR) with a focus on B2B relationships. The evaluation of the method consisted of an embedded single-case study, where participants from two countries simulated the realities of negotiation between companies. For comparison, traditional negotiation via e-mail was also conducted. The evaluation confirms that the proposed E-NeGotiAtion method quickly achieves solution(s), approaching the optimal solution on which both sides can decide, and also very importantly, confirms that the method facilitates negotiation with the partner and creates a trusted result. The evaluation demonstrates that the proposed method is economically efficient for parties of the dispute compared to negotiation via e-mail. For a more complicated task with five or more products, the E-NeGotiAtion method is significantly more suitable than negotiation via e-mail for achieving a resolution that favors one side or the other as little as possible. In conclusion, it can be said that the proposed method fulfills the definition of the dual-task of ODR—it resolves disputes and builds confidence.


2018 ◽  
Vol 111 ◽  
pp. 354-363 ◽  
Author(s):  
Yunjie Li ◽  
Dongfang Ma ◽  
Mengtao Zhu ◽  
Ziqiang Zeng ◽  
Yinhai Wang

2019 ◽  
Vol 11 (9) ◽  
pp. 2571
Author(s):  
Xujing Zhang ◽  
Lichuan Wang ◽  
Yan Chen

Low-carbon production has become one of the top management objectives for every industry. In garment manufacturing, the material distribution process always generates high carbon emissions. In order to reduce carbon emissions and the number of operators to meet enterprises’ requirements to control the cost of production and protect the environment, the paths of material distribution were analyzed to find the optimal solution. In this paper, the model of material distribution to obtain minimum carbon emissions and vehicles (operators) was established to optimize the multi-target management in three different production lines (multi-line, U-shape two-line, and U-shape three-line), while the workstations were organized in three ways: in the order of processes, in the type of machines, and in the components of garment. The NSGA-II algorithm (non-dominated sorting genetic algorithm-II) was applied to obtain the results of this model. The feasibility of the model and algorithm was verified by the practice of men’s shirts manufacture. It could be found that material distribution of multi-line layout produced the least carbon emissions when the machines were arranged in the group of type.


2013 ◽  
Vol 22 (08) ◽  
pp. 1350067 ◽  
Author(s):  
SEYYED AMIR ASGHARI ◽  
ATENA ABDI ◽  
OKYAY KAYNAK ◽  
HASSAN TAHERI ◽  
HOSSEIN PEDRAM

Electronic equipment used in harsh environments such as space has to cope with many threats. One major threat is the intensive radiation which gives rise to Single Event Upsets (SEU) that lead to control flow errors and data errors. In the design of embedded systems to be used in space, the use of radiation tolerant equipment may therefore be a necessity. However, even if the higher cost of such a choice is not a problem, the efficiency of such equipment is lower than the COTS equipment. Therefore, the use of COTS with appropriate measures to handle the threats may be the optimal solution, in which a simultaneous optimization is carried out for power, performance, reliability and cost. In this paper, a novel method is presented for control flow error detection in multitask environments with less memory and performance overheads as compared to other methods seen in the literature.


2020 ◽  
Vol 10 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Neeti Kashyap ◽  
A. Charan Kumari ◽  
Rita Chhikara

AbstractWeb service compositions are commendable in structuring innovative applications for different Internet-based business solutions. The existing services can be reused by the other applications via the web. Due to the availability of services that can serve similar functionality, suitable Service Composition (SC) is required. There is a set of candidates for each service in SC from which a suitable candidate service is picked based on certain criteria. Quality of service (QoS) is one of the criteria to select the appropriate service. A standout amongst the most important functionality presented by services in the Internet of Things (IoT) based system is the dynamic composability. In this paper, two of the metaheuristic algorithms namely Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are utilized to tackle QoS based service composition issues. QoS has turned into a critical issue in the management of web services because of the immense number of services that furnish similar functionality yet with various characteristics. Quality of service in service composition comprises of different non-functional factors, for example, service cost, execution time, availability, throughput, and reliability. Choosing appropriate SC for IoT based applications in order to optimize the QoS parameters with the fulfillment of user’s necessities has turned into a critical issue that is addressed in this paper. To obtain results via simulation, the PSO algorithm is used to solve the SC problem in IoT. This is further assessed and contrasted with GA. Experimental results demonstrate that GA can enhance the proficiency of solutions for SC problem in IoT. It can also help in identifying the optimal solution and also shows preferable outcomes over PSO.


2009 ◽  
Vol 419-420 ◽  
pp. 633-636 ◽  
Author(s):  
James C. Chen ◽  
Wun Hao Jaong ◽  
Cheng Ju Sun ◽  
Hung Yu Lee ◽  
Jenn Sheng Wu ◽  
...  

Resource-constrained multi-project scheduling problems (RCMPSP) consider precedence relationship among activities and the capacity constraints of multiple resources for multiple projects. RCMPSP are NP-hard due to these practical constraints indicating an exponential calculation time to reach optimal solution. In order to improve the speed and the performance of problem solving, heuristic approaches are widely applied to solve RCMPSP. This research proposes Hybrid Genetic Algorithm (HGA) and heuristic approach to solve RCMPSP with an objective to minimize the total tardiness. HGA is compared with three typical heuristics for RCMPSP: Maximum Total Work Content, Earliest Due Date, and Minimum Slack. Two typical RCMPSP from literature are used as a test bed for performance evaluation. The results demonstrate that HGA outperforms the three heuristic methods in term of the total tardiness.


Sign in / Sign up

Export Citation Format

Share Document