Simplification of Simulation Models for Air-Conditioning Controlling System

2017 ◽  
Vol 137 (8) ◽  
pp. 1001-1008
Author(s):  
Tadayoshi Kosaka ◽  
Kazuhiko Koyanagi ◽  
Yasutaka Satake ◽  
Isao Kobayashi ◽  
Nobuhiro Matsudaira ◽  
...  
2021 ◽  
Vol 2069 (1) ◽  
pp. 012221
Author(s):  
A M Sigounis ◽  
E D Rounis ◽  
A K Athienitis ◽  
C Vallianos

Abstract This study presents the development of a control-oriented model for Building Integrated Photovoltaic Thermal (BIPV/T) systems. Model-based control strategies could optimize their coupled operation with the building Heating Ventilation and Air-Conditioning (HVAC) system and maximize the heat utilization. Two transient simulation models (1st order and 2nd order) are developed using Python, validated with experimental data and compered to each other. Finally, simulation results are presented where the range of possible outlet air temperatures for different mass flow rates are identified.


2012 ◽  
Vol 20 (01) ◽  
pp. 1230001 ◽  
Author(s):  
KIYOSHI SAITO ◽  
JONGSOO JEONG

The energy consumption of the systems used in the heating, refrigerating, and air-conditioning field continues to increase. This necessitates improvements to the efficiency of these systems. However, in Japan, the performance of heating, refrigerating, and air-conditioning systems has already been improved greatly owing to the considerable efforts of manufacturers, the government, and academia. Therefore, it will not be easy to further decrease energy consumption simply by improving the efficiency of each system. In order to adhere to the demands of the worldwide energy saving policy, we need to investigate the best combinations and total energy management schemes for heating, refrigeration, and air-conditioning systems. To this end, simulation holds greater promise than actual field-testing because it is not easy to carry out such experiments on actual large-scale systems. High-precision simulation models are necessary for these investigations. Hence, we are developing simulation models for a heat pump, room air-conditioner, desiccant dehumidifier, indirect evaporative cooler, fuel cell, solar panel, and so on. This paper describes high-accuracy simulation models for a CO2 heat pump, absorption heat pump, and desiccant dehumidification system. We also discuss the simulator that we have developed, based on those models. This simulator is called "Energy Flow + M". It is very easy to use because it has a user-friendly GUI. It has already been made available worldwide through the Internet. It is expected to be used to decrease the energy consumed by heating, refrigeration, and air-conditioning systems.


Author(s):  
C. A. Callender ◽  
Wm. C. Dawson ◽  
J. J. Funk

The geometric structure of pore space in some carbonate rocks can be correlated with petrophysical measurements by quantitatively analyzing binaries generated from SEM images. Reservoirs with similar porosities can have markedly different permeabilities. Image analysis identifies which characteristics of a rock are responsible for the permeability differences. Imaging data can explain unusual fluid flow patterns which, in turn, can improve production simulation models.Analytical SchemeOur sample suite consists of 30 Middle East carbonates having porosities ranging from 21 to 28% and permeabilities from 92 to 2153 md. Engineering tests reveal the lack of a consistent (predictable) relationship between porosity and permeability (Fig. 1). Finely polished thin sections were studied petrographically to determine rock texture. The studied thin sections represent four petrographically distinct carbonate rock types ranging from compacted, poorly-sorted, dolomitized, intraclastic grainstones to well-sorted, foraminiferal,ooid, peloidal grainstones. The samples were analyzed for pore structure by a Tracor Northern 5500 IPP 5B/80 image analyzer and a 80386 microprocessor-based imaging system. Between 30 and 50 SEM-generated backscattered electron images (frames) were collected per thin section. Binaries were created from the gray level that represents the pore space. Calculated values were averaged and the data analyzed to determine which geological pore structure characteristics actually affect permeability.


2019 ◽  
pp. 53-65
Author(s):  
Renata Domingos ◽  
Emeli Guarda ◽  
Elaise Gabriel ◽  
João Sanches

In the last decades, many studies have shown ample evidence that the existence of trees and vegetation around buildings can contribute to reduce the demand for energy by cooling and heating. The use of green areas in the urban environment as an effective strategy in reducing the cooling load of buildings has attracted much attention, though there is a lack of quantitative actions to apply the general idea to a specific building or location. Due to the large-scale construction of high buildings, large amounts of solar radiation are reflected and stored in the canyons of the streets. This causes higher air temperature and surface temperature in city areas compared to the rural environment and, consequently, deteriorates the urban heat island effect. The constant high temperatures lead to more air conditioning demand time, which results in a significant increase in building energy consumption. In general, the shade of the trees reduces the building energy demand for air conditioning, reducing solar radiation on the walls and roofs. The increase of urban green spaces has been extensively accepted as effective in mitigating the effects of heat island and reducing energy use in buildings. However, by influencing temperatures, especially extreme, it is likely that trees also affect human health, an important economic variable of interest. Since human behavior has a major influence on maintaining environmental quality, today's urban problems such as air and water pollution, floods, excessive noise, cause serious damage to the physical and mental health of the population. By minimizing these problems, vegetation (especially trees) is generally known to provide a range of ecosystem services such as rainwater reduction, air pollution mitigation, noise reduction, etc. This study focuses on the functions of temperature regulation, improvement of external thermal comfort and cooling energy reduction, so it aims to evaluate the influence of trees on the energy consumption of a house in the mid-western Brazil, located at latitude 15 ° S, in the center of South America. The methodology adopted was computer simulation, analyzing two scenarios that deal with issues such as the influence of vegetation and tree shade on the energy consumption of a building. In this way, the methodological procedures were divided into three stages: climatic contextualization of the study region; definition of a basic dwelling, of the thermophysical properties; computational simulation for quantification of energy consumption for the four facade orientations. The results show that the façades orientated to north, east and south, without the insertion of arboreal shading, obtained higher values of annual energy consumption. With the adoption of shading, the facades obtained a consumption reduction of around 7,4%. It is concluded that shading vegetation can bring significant climatic contribution to the interior of built environments and, consequently, reduction in energy consumption, promoting improvements in the thermal comfort conditions of users.


Author(s):  
Fremmy Raymond Agustinus

Desain penyejuk udara juga dapat diterapkan di bidang kesehatan, dengan standar Cleanroom dapat diperoleh suhu, kelembaban, kenyamanan dan kebersihan yang dibutuhkan untuk ruang steril (ruang bedah). Perancangan pendingin udara dalam hal ini dilakukan dengan menentukan beban pendinginan yang diperlukan untuk ruang steril (ruang bedah), kemudian menentukan ukuran ducting, jalur ducting, dan jumlah penggunaan ducting. Desain ini menggabungkan unit split saluran yang dimodifikasi, kipas booster, filter pra, filter medium, dan filter HEPA dengan menggunakan saluran aluminium preinsulated sebagai saluran udara. Desain dilakukan dengan menggunakan perangkat lunak AutoCAD 2012, Design Tools Duct Sizer, dan Microsoft Excel. Dari hasil perhitungan dan desain didapatkan kebutuhan kapasitas 3 ruang bedah yaitu ducted ducted 100.000 BTUH sebanyak 3 unit, booster fan 3.3 - 4 Di WG sebanyak 3 unit, pre filter 24 "x 24" x 2 "6 set, filter menengah 610 x 610 x 290 mm 6 set, dan filter HEPA 1220 x 610 x 70 mm 12. Untuk ruang steril, tekanan statis yang dihasilkan oleh unit pendingin harus lebih besar daripada tekanan statis yang dihasilkan dari unit yang ada. di ruang semi steril. Dengan kata lain, ruang steril harus memiliki tekanan positif terhadap ruang semi steril. Hal ini dimaksudkan agar udara di ruang semi steril tidak masuk ke ruang steril ketika pintu antar ruangan dibuka. Desain dan perhitungan ruang bedah, suhu nyata yang diperoleh adalah 23 ° C ± 2 ° C dan kelembaban relatif yang diperoleh adalah 60% ± 2%.   Air conditioning design can also be applied in the health field, with cleanroom standard can be obtained temperature, humidity, comfort and hygiene needed for sterile room (surgical room). The design of air conditioning in this case is done by determining the cooling load required for the sterile room (surgical room), then determining the ducting size, ducting path, and the amount of ducting usage. This design combines modified ducted split unit, booster fan, pre filter, medium filter, and HEPA filter by using preinsulated aluminum duct as an air passage. The design is done by using AutoCAD 2012 software, Design Tools Duct Sizer, and Microsoft Excel. From the calculation and design result obtained the capacity requirement of 3 surgical room that is split ducted 100.000 BTUH as many as 3 units, booster fan 3.3 - 4 In WG as many as 3 units, pre filter 24"x 24" x 2" 6 sets, medium filter 610 x 610 x 290 mm 6 sets, and HEPA filter 1220 x 610 x 70 mm 12 sets. For the sterile room, the static pressure generated by the cooling unit shall be larger than the static pressure generated from the unit present in the semi sterile room. In other words, the sterile room must have positive pressure to the semi sterile room. It is intended that the air in the semi sterile room does not enter into the sterile room when the door between room opened. In this surgical room design and calculation, real temperature obtained is 23 °C ± 2 °C and the relative moisture obtained is 60% ± 2%.


Sign in / Sign up

Export Citation Format

Share Document