Development of an Induction-Free Current Sensor for Application in Spot-Welding Current Control

2012 ◽  
Vol 132 (1) ◽  
pp. 58-66
Author(s):  
Yoshiaki Takasaki ◽  
Tatsunori Munesada ◽  
Toshikatsu Sonoda

This paper is an attempt to accomplish a performance analysis of the classical (Proportional Integral) and intelligence(Artificial Neuro Fuzzy Inference System) control techniques on current spike reduction by means of magnetization level control in the primary winding on the medium recurrence transformer based DC spot welding framework. Cause for occurrence of spike in the primary winding of a transformer is unequal resistance between two secondary circuit’s of the transformer and different characteristics of rectifier diode. Which leads to the magnetic saturation in the form of spikes in the primary current of a transformer Consequently over current protection switch off. So, Current Spike decrease is a significant factor to be considered while spot welding frameworks are concerned. This can be used in automobile industry and it is a major issue in spot welding system. The present control strategy is a piecewise straight control system that is enlivened from the DC-DC converter control calculations to enlist a novel current spike decrease technique in the MFDC spot welding applications. The traditional and insight controllers were utilized for spike decrease in essential current of welding transformer so as to make the opposition spot welding framework to work easily. Current control techniques by the above mentioned controllers are evaluated in terms total harmonic distortion (THD), Percentage of current spike reduction, percentage ripple in welding current, rise time and settling time. Matlab/SimulinkTM software is carried out for the analyzing the classical and intelligence controllers and results are tabulated.


2021 ◽  
Vol 11 (3) ◽  
pp. 181-185
Author(s):  
Amit Hazari ◽  
Rith Saha ◽  
Bidisha Ghosh ◽  
Debraj Sengupta ◽  
Sayan Sarkar ◽  
...  

The spot welding procedure is used in a variety of industrial applications. The most critical elements influencing welding quality, productivity, and cost are the spot welding parameters. This research examines the effect of welding factors such as welding current and welding time on the strength of various welding joint designs. Resistance spot welding (RSW) is used in the automotive industry for manufacturing. This research focused on the optimization of process parameters for resistance spot welding (RSW), as well as the tensile testing and spot weld diameter. The goals of this analysis are to comprehend the physics of the process and to demonstrate the effect of electrical current, weld time, and material type on the resistance spot welding process.


2013 ◽  
Vol 795 ◽  
pp. 492-495 ◽  
Author(s):  
Mohd Noor Mazlee ◽  
Alvin Tan Yin Zhen ◽  
Shamsul Baharin Jamaludin ◽  
Nur Farhana Hayazi ◽  
Shaiful Rizam Shamsudin

Tensile shear strength and ageing treatment of dissimilar 6063 aluminum alloy-316L stainless steel joint fabricated by spot welding were investigated. The results showed that tensile shear strength increased with the increasing of welding current. The enhancement of tensile shear strength of the joints was due to the enlargement of the nugget diameter. It was also found that the tensile shear strength values for heat treated joint almost similar to that of non-heat treated joint.


2004 ◽  
Vol 126 (3) ◽  
pp. 605-610 ◽  
Author(s):  
C. T. Ji, ◽  
Y. Zhou,

Dynamic electrode displacement and force were characterized during resistance spot welding of aluminum alloy 5182 sheets using a medium-frequency direct-current welder. It was found that both electrode displacement and force increased rapidly at the beginning of the welding stage and then at a reducing rate. Rates of increase in electrode displacement and force were both proportional to welding current. And both electrode displacement and force experienced a sudden drop when weld metal expulsion occurred. However, the rate of increase in electrode displacement did not reach zero during welding even for joints with sufficient nugget diameter, while electrode force peaked when a large nugget diameter was produced. Possible strategies for process monitoring and control were also discussed.


Author(s):  
Wei Li ◽  
Daniel Cerjanec

This paper presents a comparative study of the AC and MFDC resistance spot welding process. Two identical welders were used; one with a single phase AC and the other with a median frequency DC weld control. Both welders were instrumented such that the primary and secondary voltage and current could be collected. A nugget growth experiment was conducted to compare the weld size and energy consumption in the AC and MFDC welding processes. It is found that the MFDC process generally produces larger welds with the same welding current. However, this difference is more prominent when the welding current is low. Overall the AC welding process consumes more energy to make a same size weld. The larger the welding current is used, the less efficient the AC process becomes.


2018 ◽  
Vol 115 (6) ◽  
pp. 610 ◽  
Author(s):  
Mehdi Safari ◽  
Hossein Mostaan ◽  
Abdoreza Ghaderi

In this work, dissimilar resistance spot welding of austenitic stainless steel sheet (304 grade) and ferritic stainless steel sheet (409 grade) is studied experimentally. For this purpose, the effects of process parameters such as welding current, welding time and electrode force on tensile-shear strength of resistance spot welded joints are investigated with response surface methodology (RSM). Also, microstructural evolutions during resistance spot welding process of AISI 409 and AISI 304 stainless steels are evaluated by optical microscopy. It is concluded from results that the tensile-shear strength of spot welds is increased with increasing the welding current, welding time and electrode force. It is shown that widmanstatten ferrites have been grown in the weld metal of dissimilar resistance spot welds of AISI 304 and AISI 409 stainless steels.


Sign in / Sign up

Export Citation Format

Share Document