scholarly journals Optical Measurement of DC Current with Ripples by AC Magnetic Field Superposition Method

1997 ◽  
Vol 117 (6) ◽  
pp. 880-881
Author(s):  
Masaru Higaki
2021 ◽  
Author(s):  
Zhenan Jiang ◽  
W Zhou ◽  
Q Li ◽  
M Yao ◽  
J Fang ◽  
...  

Dynamic resistance, which occurs when a HTS coated conductor carries a DC current under an AC magnetic field, can have critical implications for the design of HTS machines. Here, we report measurements of dynamic resistance in a commercially available SuperPower 4 mm-wide YBCO coated conductor, carrying a DC current under an applied AC magnetic field of arbitrary orientation. The reduced DC current, I t/I c0, ranged from 0.01 to 0.9, where I t is the DC current level and I c0 is the self-field critical current of the conductor. The field angle (the angle between the magnetic field and the normal vector of the conductor wide-face) was varied between 0° and 90° at intervals of 10°. We show that the effective width of the conductor under study is ∼12% less than the physical wire width, and we attribute this difference to edge damage of the wire during or after manufacture. We then examine the measured dynamic resistance of this wire under perpendicular applied fields at very low DC current levels. In this regime we find that the threshold field, B th, of the conductor is well described by the nonlinear equation of Mikitik and Brandt. However, this model consistently underestimates the threshold field at higher current levels. As such, the dynamic resistance in a coated conductor under perpendicular magnetic fields is best described using two different equations for each of the low and high DC current regimes, respectively. At low DC currents where I t/I c0 ≤ 0.1, the nonlinear relationship of Mikitik and Brandt provides the closest agreement with experimental data. However, in the higher current regime where I t/I c0 ≥ 0.2, closer agreement is obtained using a simple linear expression which assumes a current-independent penetration field. We further show that for the conductor studied here, the measured dynamic resistance at different field angles is dominated by the perpendicular magnetic field component, with negligible contribution from the parallel component. Our findings now enable the dynamic resistance of a single conductor to be analytically determined for a very wide range of DC currents and at all applied field angles. This is the Accepted Manuscript version of an article accepted for publication in 'Superconductor Science and Technology'. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6668/aaa49e.


Author(s):  
Yiran Meng ◽  
Wei Pi ◽  
Xini Lou ◽  
Yuantong Ma ◽  
Yueyin Wang ◽  
...  

2021 ◽  
Author(s):  
Zhenan Jiang ◽  
W Zhou ◽  
Q Li ◽  
M Yao ◽  
J Fang ◽  
...  

Dynamic resistance, which occurs when a HTS coated conductor carries a DC current under an AC magnetic field, can have critical implications for the design of HTS machines. Here, we report measurements of dynamic resistance in a commercially available SuperPower 4 mm-wide YBCO coated conductor, carrying a DC current under an applied AC magnetic field of arbitrary orientation. The reduced DC current, I t/I c0, ranged from 0.01 to 0.9, where I t is the DC current level and I c0 is the self-field critical current of the conductor. The field angle (the angle between the magnetic field and the normal vector of the conductor wide-face) was varied between 0° and 90° at intervals of 10°. We show that the effective width of the conductor under study is ∼12% less than the physical wire width, and we attribute this difference to edge damage of the wire during or after manufacture. We then examine the measured dynamic resistance of this wire under perpendicular applied fields at very low DC current levels. In this regime we find that the threshold field, B th, of the conductor is well described by the nonlinear equation of Mikitik and Brandt. However, this model consistently underestimates the threshold field at higher current levels. As such, the dynamic resistance in a coated conductor under perpendicular magnetic fields is best described using two different equations for each of the low and high DC current regimes, respectively. At low DC currents where I t/I c0 ≤ 0.1, the nonlinear relationship of Mikitik and Brandt provides the closest agreement with experimental data. However, in the higher current regime where I t/I c0 ≥ 0.2, closer agreement is obtained using a simple linear expression which assumes a current-independent penetration field. We further show that for the conductor studied here, the measured dynamic resistance at different field angles is dominated by the perpendicular magnetic field component, with negligible contribution from the parallel component. Our findings now enable the dynamic resistance of a single conductor to be analytically determined for a very wide range of DC currents and at all applied field angles. This is the Accepted Manuscript version of an article accepted for publication in 'Superconductor Science and Technology'. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-6668/aaa49e.


2011 ◽  
Vol 287-290 ◽  
pp. 2916-2920
Author(s):  
Chun Yan Ban ◽  
Peng Qian ◽  
Xu Zhang ◽  
Qi Xian Ba ◽  
Jian Zhong Cui

The resistance of Al-21%Cu alloy under no magnetic field, DC magnetic field and AC magnetic field from liquid to solid was measured by a four-probe method. The difference of resistance versus temperature curves (R-T curves) was analyzed. It is found that the R-T curves of Al-21%Cu alloy are monotone decreasing and have two obvious turning points. Under DC magnetic field, the liquidus and solidus temperatures of the alloy both decrease, while under AC magnetic field, the liquidus and solidus temperatures both increase. There is a good agreement between the microstructure of quenching sample and R-T curves. The mechanism of the effect of magnetic fields was discussed.


2002 ◽  
Vol 55 (1-2) ◽  
pp. 17-19 ◽  
Author(s):  
M Babincová ◽  
P Čičmanec ◽  
V Altanerová ◽  
Č Altaner ◽  
P Babinec

Author(s):  
Junfeng Jiang ◽  
Ruoyu Hong ◽  
Xiaohui Zhang ◽  
Hongzhong Li

Hyperthermia therapy for cancer has attracted much attention nowadays. The study on the heat transfer in the magnetic fluid and the tumor is crucial for the successful application of magnetic fluid hyperthermia (MFH). Water-based Fe3O4 magnetic fluid is expected to be a most appropriate candidate for MFH due to the good biocompatibility, high saturation magnetization, super-paramagnetization and high chemical stability. In this paper, we explore the heat generation and transfer in magnetic fluid which is placed under an AC magnetic field. It is found that the amplitude and the frequency of alternating magnetic field, particle size and volume fraction have a pronounce influence on maximum temperature of hyperthermia.


Sign in / Sign up

Export Citation Format

Share Document