scholarly journals COST EFFECTIVE CULTIVATION AND BIOMASS PRODUCTION OF GREEN MICROALGA DESMODESMUS SUBSPICATUS MB. 23 IN NPK FERTILIZER MEDIUM

Author(s):  
Jasmin Kaippilliparambil Abdulsamad
2013 ◽  
Vol 85 (4) ◽  
pp. 1427-1438 ◽  
Author(s):  
MATHIAS A. CHIA ◽  
ANA T. LOMBARDI ◽  
MARIA DA GRACA G. MELAO

The need for clean and low-cost algae production demands for investigations on algal physiological response under different growth conditions. In this research, we investigated the growth, biomass production and biochemical composition of Chlorella vulgaris using semi-continuous cultures employing three growth media (LC Oligo, Chu 10 and WC media). The highest cell density was obtained in LC Oligo, while the lowest in Chu medium. Chlorophyll a, carbohydrate and protein concentrations and yield were highest in Chu and LC Oligo media. Lipid class analysis showed that hydrocarbons (HC), sterol esthers (SE), free fatty acids (FFA), aliphatic alcohols (ALC), acetone mobile polar lipids (AMPL) and phospholipids (PL) concentrations and yields were highest in the Chu medium. Triglyceride (TAG) and sterol (ST) concentrations were highest in the LC Oligo medium. The results suggested that for cost effective cultivation, LC Oligo medium is the best choice among those studied, as it saved the cost of buying vitamins and EDTA associated with the other growth media, while at the same time resulted in the best growth performance and biomass production.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1461
Author(s):  
Roberto Braglia ◽  
Lorenza Rugnini ◽  
Sara Malizia ◽  
Francesco Scuderi ◽  
Enrico Luigi Redi ◽  
...  

Increasing levels of freshwater contaminants, mainly due to anthropogenic activities, have resulted in a great deal of interest in finding new eco-friendly, cost-effective and efficient methods for remediating polluted waters. The aim of this work was to assess the feasibility of using a green microalga Desmodesmus sp., a cyanobacterium Nostoc sp. and a hemicryptophyte Ampelodesmos mauritanicus to bioremediate a water polluted with an excess of nutrients (nitrogen and phosphorus) and heavy metals (copper and nickel). We immediately determined that Nostoc sp. was sensitive to metal toxicity, and thus Desmodesmus sp. was chosen for sequential tests with A. mauritanicus. First, A. mauritanicus plants were grown in the ‘polluted’ culture medium for seven days and were, then, substituted by Desmodesmus sp. for a further seven days (14 days in total). Heavy metals were shown to negatively affect both the growth rates and nutrient removal capacity. The sequential approach resulted in high metal removal rates in the single metal solutions up to 74% for Cu and 85% for Ni, while, in the bi-metal solutions, the removal rates were lower and showed a bias for Cu uptake. Single species controls showed better outcomes; however, further studies are necessary to investigate the behavior of new species.


2020 ◽  
Author(s):  
Rosalin Damacena ◽  
Aditya Toriq Rochmanto ◽  
Ni Wayan Kristina Eka Yanti ◽  
Sri Handayani ◽  
Nasruddin ◽  
...  

2015 ◽  
Vol 28 (2) ◽  
pp. 889-896 ◽  
Author(s):  
Krzysztof Grabski ◽  
Natalia Baranowski ◽  
Joanna Skórko-Glonek ◽  
Zbigniew Tukaj

1999 ◽  
Vol 28 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Sara Nienow ◽  
Kevin T. McNamara ◽  
Andrew R. Gillespie ◽  
Paul V. Preckel

Public and private electric utilities are considering co-firing biomass with coal as a strategy to reduce the levels of CO2, SO2 and NOx in stack emissions, as well as a response to state legislative mandates requiring the use of renewable fuels. This analysis examines the conditions under which biomass co-firing is economically feasible for utilities and woody biomass producers and describes additional environmental and community benefits associated with biomass use. This paper presents a case study of woody biomass production and co-firing at the Northern Indiana Public Service Company (NIPSCO) Michigan City Unit No. 12 power plant. A Salix (willow) production budget was created to assess the feasibility of plantation tree production to supply biomass to the utility for fuel blending. A GAMS model was developed to examine the optimal co-firing blend of coal and biomass while minimizing variable cost, including the cost of ash disposal and material procurement costs. The model is constrained by the levels of pollution produced. This model is used to examine situations where coal is the primary fuel and waste wood, willow trees, or both are available for fuel blending. Capital costs for co-firing were estimated outside of the model and are incorporated into the total cost of co-firing. The results indicate that under certain circumstances it is cost-effective for the power plant to co-fire biomass. Sensitivity analysis is used to test biomass price sensitivity and explores the effects of potential public policies on co-firing.


2017 ◽  
Vol 108 ◽  
pp. 356-364 ◽  
Author(s):  
Jinxing Ma ◽  
Zhiwei Wang ◽  
Junyao Zhang ◽  
T. David Waite ◽  
Zhichao Wu

2014 ◽  
Author(s):  
Nisha Phour Dhull ◽  
Raman Soni ◽  
Deepak Kumar Rahi ◽  
Sanjeev Kumar Soni

The present study investigates the possibility of integrating an existing industrial large scale biomass production with the treatment of waste water in which a mixture of organic and inorganic rich pollutants was used as a medium. This study suggests that the replacement of a defined medium with a complete mixotrophic medium gives a significant statistical difference in terms of growth parameters i.e. biomass production and specific growth rate. The green microalga C. pyrenoidosa was cultivated under different mixotrophic conditions for evaluation of biomass production. Inorganic defined fog’s medium supplemented, with raw dairy wastewater led to 1.37g/L biomass production in comparison to 1.2g/L obtained with pure glucose revealing 14.16% increase. The study also involves the supplementation of raw dairy wastewater as an organic carbon source in an inorganic medium comprising municipal treated water and reverse osmosis (RO) treated wastewater and attained 2.4g/L and 1.6g/L of biomass respectively, as compared to 0.3g/L and 0.16g/L obtained in the wastewaters alone revealing 700% and 900% increase respectively. Mixotrophic regimen cells as analyzed by a 2D Fourier transform infrared (FTIR) spectroscopy for its biochemical content revealed that fog’s blended raw dairy waste (RDW) regimen cells had maximum Carbohydrate/Amide ratio. The study suggests that the mixotrophic regimen C. pyrenoidosa cells can show appropriate growth in a mixture of waste waters and the same comes out to be a cost effective and feasible alternative commercial medium for biomass production without requiring any expensive organic carbon sources in the culture medium.


2014 ◽  
Author(s):  
Nisha Phour Dhull ◽  
Raman Soni ◽  
Deepak Kumar Rahi ◽  
Sanjeev Kumar Soni

The present study investigates the possibility of integrating an existing industrial large scale biomass production with the treatment of waste water in which a mixture of organic and inorganic rich pollutants was used as a medium. This study suggests that the replacement of a defined medium with a complete mixotrophic medium gives a significant statistical difference in terms of growth parameters i.e. biomass production and specific growth rate. The green microalga C. pyrenoidosa was cultivated under different mixotrophic conditions for evaluation of biomass production. Inorganic defined fog’s medium supplemented, with raw dairy wastewater led to 1.37g/L biomass production in comparison to 1.2g/L obtained with pure glucose revealing 14.16% increase. The study also involves the supplementation of raw dairy wastewater as an organic carbon source in an inorganic medium comprising municipal treated water and reverse osmosis (RO) treated wastewater and attained 2.4g/L and 1.6g/L of biomass respectively, as compared to 0.3g/L and 0.16g/L obtained in the wastewaters alone revealing 700% and 900% increase respectively. Mixotrophic regimen cells as analyzed by a 2D Fourier transform infrared (FTIR) spectroscopy for its biochemical content revealed that fog’s blended raw dairy waste (RDW) regimen cells had maximum Carbohydrate/Amide ratio. The study suggests that the mixotrophic regimen C. pyrenoidosa cells can show appropriate growth in a mixture of waste waters and the same comes out to be a cost effective and feasible alternative commercial medium for biomass production without requiring any expensive organic carbon sources in the culture medium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sahar Keskes ◽  
Wafa Jallouli ◽  
Imen Ben Atitallah ◽  
Fatma Driss ◽  
Emna Sahli ◽  
...  

AbstractThis study investigates the optimization of the culture conditions for enhancing Photorhabdus temperata biopesticide production using wastewater (WS4) as a raw material. Box-Behnken design (BBD) was used to evaluate the effects of carbon to nitrogen ratio (C/N), sodium chloride concentration and inoculum size on P. temperata biomass production and insecticidal activity. For an enhanced biopesticide production, the optimum operating conditions were as follows: inoculum size = 4%; C/N ratio = 12.5 and [NaCl] = 4 g/L for two responses. 1.95 and 2.75 fold improvements in oral toxicity and biomass production were respectively obtained in the cost-effective medium developed in this study (WS4 I) using the three variables at their optimal values. Under the optimized conditions, WS4 I-grown cells exhibited higher membrane integrity according to flow cytometry analysis since dead cells presented only 9.2% compared to 29.2% in WS4. From batch fermentations carried out in WS4 I and WS4, P. temperata kinetic parameters in terms of biomass production and substrate consumption rates were modeled. The obtained results showed that the maximum specific growth rate in WS4 I was of 0.43 h−1 while that obtained in WS4 was of 0.14 h−1. In addition, the efficiency of P. temperata to metabolize organic carbon was enhanced by optimizing the culture conditions. It reached 72.66% instead of 46.18% in the control fermentation after 10 h of incubation. Under the optimized conditions, P. temperata cells showed the highest specific consumption rate resulting in a toxin synthesis improvement.


Sign in / Sign up

Export Citation Format

Share Document