scholarly journals An Investigation on the Influence of Modeling Approach and Load Pattern on Seismic Performance of RC Structures

2021 ◽  
Vol 8 (2) ◽  
pp. 85-94
Author(s):  
C. M. Ravikumar ◽  
L. K. Ashwini ◽  
M. Keshava Keshavamurthy

Non-linear Static Analysis serves as a suitable measure to evaluate the performance of a structural system. The careful selection of modelling approach and the load pattern is critical to arrive at an adequate performance evaluation. The present study seeks to evaluate and compare the response of an existing eight story reinforced concrete structure, through the application of different modeling approaches and load patterns prescribed by FEMA 356. The results indicates that, with extreme clarity, that in all cases, the shape of the lateral load distribution is what the response of the buildings is finely accustomed to. This is especially true when different patterns of load are considered. It can also be observed that there is a very small difference between various load patterns.

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Alireza Panjsetooni ◽  
Norazura Muhamad Bunnori ◽  
Amir Hossein Vakili

Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures.


2005 ◽  
Vol 10 (3) ◽  
pp. 281-290 ◽  
Author(s):  
Hailing Zhang ◽  
Dongzhou Huang ◽  
Ton-Lo Wang

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Marco Filippo Ferrotto ◽  
Francesco Basone ◽  
Panangiotis G. Asteris ◽  
Liborio Cavaleri

The selection of seismic inputs for nonlinear dynamic analysis is widely debated, mainly focusing on the advantages and disadvantages provided by the choice of natural, simulated, or artificial records. This work proves the differences in the structural behavior of RC buildings when using accelerograms with different levels of stationarity. Initially, nonlinear response under three sets of accelerograms equivalent in terms of pseudo acceleration spectrum is evaluated and compared. Then, the results of incremental dynamic analyses are compared by the statistical point of view considering different levels of irregularity for the reference structure.


2019 ◽  
Vol 22 (8) ◽  
pp. 1965-1976
Author(s):  
Zhong Ma ◽  
Minjuan He ◽  
Renle Ma ◽  
Zheng Li ◽  
Linlin Zhang

A cyclic loading experiment involving a timber-steel hybrid structure consisting of a steel frame and a novel light timber-steel diaphragm is presented to quantify the flexibility of the diaphragm and its ability to distribute lateral loads in the elastic-plastic phase of the structure. A lateral load-distribution factor was proposed, and its relationship to the ratio of the stiffness of the diaphragm to that of the lateral load-resisting elements was investigated. The diaphragm was classified based on these variables. The results indicated that the failure modes of the structure were associated with the forms of damage experienced by the lateral load-resisting elements, whereas little damage was observed for the diaphragm. The diaphragm exhibited the ability to continuously adjust the distribution of lateral loads to each lateral load-resisting element; accordingly, each lateral load-resisting element had approximately the same shear force, the same lateral stiffness, and the same lateral displacement during the loading process. As the lateral displacement increased, the stiffness ratio and load-distribution factor both gradually increased, and the diaphragm correspondingly changed from semi-rigid to rigid. At times, as the lateral displacement increased, the diaphragm rapidly became rigid, and it was unnecessarily rigid during the initial loading phase when the in-plane stiffness reached a certain threshold.


2020 ◽  
pp. 107754632092393
Author(s):  
Yongqiang Gong ◽  
Liang Cao ◽  
Simon Laflamme ◽  
James Ricles ◽  
Spencer Quiel ◽  
...  

The motion of cladding systems can be leveraged to mitigate natural and man-made hazards. The literature counts various examples of connections enhanced with passive energy dissipation capabilities at connections. However, because such devices are passive, their mitigation performance is typically limited to specific excitations. The authors have recently proposed a novel variable friction cladding connection capable of mitigating hazards semi-actively. The variable friction cladding connection is engineered to transfer lateral forces from the cladding element to the structural system. Its variation in friction force is generated by a toggle-actuated variable normal force applied onto sliding friction plates. In this study, a multiobjective motion-based design methodology integrating results from the previous work is proposed to leverage the variable friction cladding connection for nonsimultaneous wind, seismic, and blast hazard mitigation. The procedure starts with the quantification of each hazard and performance objectives. It is followed by the selection of dynamic parameters enabling prescribed performance under wind and seismic loads, after which an impact rubber bumper is designed to satisfy motion requirements under blast. Last, the peak building responses are computed and iterations conducted on the design parameters on the satisfaction of the motion objectives. The motion-based design procedure is verified through numerical simulations on two example buildings subjected to the three nonsimultaneous hazards. The performance of the variable friction cladding connection is also assessed and compared against different control cases. Results show that the motion-based design procedure yields a conservative design approach in meeting all of the motion requirements and that the variable friction cladding connection performs significantly well at mitigating vibrations.


2018 ◽  
Vol 45 ◽  
pp. 00015 ◽  
Author(s):  
Edyta Dudkiewicz ◽  
Alina Żabnieńska-Góra

The actual volume of water consumption in the various industrial halls is very diverse. Many factors have an impact on that value, depending on the demand for: domestic, fire-fighting, technologically specific target and other purposes. The demand for domestic water in the production hall is primarily due to the use of showers, wash basins and flush toilets. Workplaces should be appropriately equipped with hygienic and sanitary facilities, depending on its degree of soiling, type of work and gender. The water flow is relevant for dimensioning the water supply system including the diameter selection of the water pipes. Criterion for selection of the diameter is the flow velocity of the water which varies depending on the manufacturer’s guidelines, the material used and the law. The article analyses the dynamics of load pattern of hot water in industrial halls. The methods of flow calculation in production halls based on an analysis of patterns available in literature and the water flow velocity criteria is discussed. The results of the research of the dynamics of water load pattern in a production hall located in Wroclaw is presented and discussed.


2020 ◽  
Vol 8 (11) ◽  
pp. 873
Author(s):  
Andrea Cucco ◽  
Giovanni Quattrocchi ◽  
Walter Brambilla ◽  
Augusto Navone ◽  
Pieraugusto Panzalis ◽  
...  

Seagrass wrack are commonly found on the beach face of the sandy shore all around the world and often persists in situ during the whole year, favouring the emergence of conflicts for the use of the sandy coasts for bathing or for other recreational purposes. As a consequence, these deposits are often removed from the beach during the summer months, temporary stocked, and relocated on the shore face in the next autumn or winter season. The selection of the sites on the shoreline where the leaves should be released before the storms season is often an issue, considering the optimization needs between the transportation costs and the oceanographic features of the dumping site. In this study, a numerical approach was proposed to identify the most suitable areas for the autumnal repositioning of the seagrass wracks for two beaches of Sardinia, an island located in the Western Mediterranean Sea where Posidonia oceanica (L. Delile, 1813) is the most widespread seagrass species. The method is based on the use of hydrodynamic, wave, and particle tracking models and provides important indications useful for the management of this type of practice that can be extended to all different type of beaches along the Mediterranean coasts.


Sign in / Sign up

Export Citation Format

Share Document