scholarly journals ID: 4001 Nanoparticle-based Cancer Therapy

2017 ◽  
Vol 4 (S) ◽  
pp. 2
Author(s):  
Fuyu Tamanoi

Advances in Nanotechnology have led to the development of a variety of nanomaterials that are changing the way cancer therapy is carried out. A particularly important example is nanoparticle that can carry cargo to tumor. We are using mesoporous silica nanoparticles (MSNs) for cancer therapy. MSNs contain thousands of pores that provide storage space for anticancer drugs. These materials are biocompatible and safe. In addition, we have recently introduced biodegradability into MSNs.  We have shown that MSNs exhibit excellent tumor targeting capability in two different animal model systems (chicken egg tumor model and mouse xenografts). This tumor targeting capability is partly due to its small size; these nano-sized particles can accumulate in tumor due to leaky tumor vasculature. In addition, we have carried out surface modifications to attach ligands that bind receptors present on the surface of cancer cells. For example, folate was attached to the surface that enables binding to folate receptors overexpressed on cancer cells.  We have also conferred controlled anticancer drug release capability to MSNs in collaboration with Fraser Stoddart and Jeff Zink. This was accomplished by attaching nanovalves at the opening of the pores. Rotaxanes and pseudorotaxanes are used to prepare nanovalves. These chemical compounds consist of a stalk and a moving part. When the moving part is close to the pore opening, the nanovalve is closed. On the other hand, when the moving part is located away from the pore opening, the nanovalve is closed. In this way, the nanovalve provides an open and close function so that controlled release of anticancer drugs can be carried out.  Light activated nanovalves were developed by incorporating azobenzene into nanovalves. Azobenzene changes conformation upon light exposure and this conformational change opens the nanovalve releasing anticancer drugs in a power and exposure time dependent manner. More recently, this system was modified by incorporating two-photon dyes that can capture energy from two-photon light and transfer to azobenzene to drive the release of anticancer drugs. This enables the system to work with tissue penetrating two-photon light.  We have also developed nanoparticles that respond to oscillating magnetic field. This system was developed using MSNs that contain iron oxide core. Because of superparamagnetic property of iron oxide, the internal temperature of such nanoparticles increases when exposed to oscillating magnetic field. This temperature increase drives opening of nanovalves that are particularly designed for this purpose.   Development of nanoparticles that respond to external cues such as light and magnetic field may change the way cancer therapy is carried out. Implications on the future of cancer therapy will be discussed.

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1201
Author(s):  
Garri Manasaryan ◽  
Dmitry Suplatov ◽  
Sergey Pushkarev ◽  
Viktor Drobot ◽  
Alexander Kuimov ◽  
...  

The PARP family consists of 17 members with diverse functions, including those related to cancer cells’ viability. Several PARP inhibitors are of great interest as innovative anticancer drugs, but they have low selectivity towards distinct PARP family members and exert serious adverse effects. We describe a family-wide study of the nicotinamide (NA) binding site, an important functional region in the PARP structure, using comparative bioinformatic analysis and molecular modeling. Mutations in the NA site and D-loop mobility around the NA site were identified as factors that can guide the design of selective PARP inhibitors. Our findings are of particular importance for the development of novel tankyrase (PARPs 5a and 5b) inhibitors for cancer therapy.


RSC Advances ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 2646-2649 ◽  
Author(s):  
Lamiaa M. A. Ali ◽  
Emna Mathlouthi ◽  
Maëlle Cahu ◽  
Saad Sene ◽  
Morgane Daurat ◽  
...  

Mn2+-doped Prussian blue nanoparticles loaded with doxorubicin present high efficiency for combined photothermal and chemotherapy of cancer cells with a synergic effect under two-photon irradiation.


2017 ◽  
Vol 5 (5) ◽  
pp. 988-995 ◽  
Author(s):  
Baoli Dong ◽  
Xuezhen Song ◽  
Xiuqi Kong ◽  
Chao Wang ◽  
Nan Zhang ◽  
...  

Lysosomal pH is closely related to the metastasis and apoptosis of cancer cells.


Author(s):  
Ranwei Li ◽  
Tiecheng Liu ◽  
Ke Wang

AbstractNovel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0156294 ◽  
Author(s):  
Sudath Hapuarachchige ◽  
Yoshinori Kato ◽  
Ethel J. Ngen ◽  
Barbara Smith ◽  
Michael Delannoy ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (37) ◽  
pp. 19196-19204 ◽  
Author(s):  
K. A. López ◽  
M. N. Piña ◽  
R. Alemany ◽  
O. Vögler ◽  
F. Barceló ◽  
...  

In this work four different iron oxide nanoparticles for the delivery of antitumoral drugs into cancer cells were synthesized and characterized.


2019 ◽  
Vol 7 (24) ◽  
pp. 3856-3864 ◽  
Author(s):  
Mengxue Liu ◽  
Jiulong Zhang ◽  
Xin Li ◽  
Chao Cai ◽  
Xueyan Cao ◽  
...  

A novel targeted theranostic nanoplatform (LAP–Fe3O4@PDA–PEG–PBA) is constructed for magnetic resonance and photoacoustic imaging-guided photothermal therapy of cancer cells overexpressing sialic acid.


Sign in / Sign up

Export Citation Format

Share Document