Normal Pubertal Development: Part I: The Endocrine Basis of Puberty

2011 ◽  
Vol 32 (6) ◽  
pp. 223-229 ◽  
Author(s):  
B. Bordini ◽  
R. L. Rosenfield
2011 ◽  
Vol 32 (6) ◽  
pp. 223-229
Author(s):  
Brian Bordini ◽  
Robert L. Rosenfield

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 419
Author(s):  
Valeria Calcaterra ◽  
Hellas Cena ◽  
Corrado Regalbuto ◽  
Federica Vinci ◽  
Debora Porri ◽  
...  

Puberty is a crucial developmental stage in the life span, necessary to achieve reproductive and somatic maturity. Timing of puberty is modulated by and responds to central neurotransmitters, hormones, and environmental factors leading to hypothalamic-pituitary-gonadal axis maturation. The connection between hormones and nutrition during critical periods of growth, like fetal life or infancy, is fundamental for metabolic adaptation response and pubertal development control and prediction. Since birth weight is an important indicator of growth estimation during fetal life, restricted prenatal growth, such as intrauterine growth restriction (IUGR) and small for gestational age (SGA), may impact endocrine system, affecting pubertal development. Successively, lactation along with early life optimal nutrition during infancy and childhood may be important in order to set up timing of sexual maturation and provide successful reproduction at a later time. Sexual maturation and healthy growth are also influenced by nutrition requirements and diet composition. Early nutritional surveillance and monitoring of pubertal development is recommended in all children, particularly in those at risk, such as the ones born SGA and/or IUGR, as well as in the case of sudden weight gain during infancy. Adequate macro and micronutrient intake is essential for healthy growth and sexual maturity.


Author(s):  
And Demir ◽  
Adem Aydın ◽  
Atilla Büyükgebiz ◽  
Ulf-Håkan Stenman ◽  
Matti Hero

Abstract Objectives Determination of LH in urine has proved to be a reliable method for evaluation of pubertal development. The human LH assay based on time-resolved immunofluorometric (IFMA) technology (AutoDELFIA, PerkinElmer, Wallac) has been found to be suitable for this purpose thanks to its high sensitivity but other assays have not been evaluated. We have analyzed our data obtained by another potentially sensitive detection technique, enhanced luminometric assay (LIA) with the objective of finding a viable alternative to IFMA since these may not be available in the future. Methods LIA was used to measure LH and FSH in serum and urine samples from 100 healthy subjects of each Tanner stage and both genders, whose pubertal development has been determined. Results Urinary gonodotropin concentrations measured by LIA correlated well with Tanner stage [(r=0.93 for girls, r=0.81 for boys; p<0.01 for LH) and (r=0.81 for girls, r=0.73 for boys; p<0.01 for FSH)]. LIA determinations revealed the increase in U-LH concentrations during the transition from Tanner stage 1–2 in both girls and boys (p<0.001), whereas U-FSH and S-LH were able to detect the increase from Tanner stage 1–2 only in boys or girls, respectively (both p<0.001). Conclusions Measurement of urinary gonadotropin concentrations by LIA may be useful for the evaluation of overall pubertal development and also in the detection of transition from prepuberty to puberty.


2020 ◽  
pp. 1-26
Author(s):  
Jéssica Cumpian Silva ◽  
Ana Elisa Madalena Rinaldi ◽  
Francisco de Assis Guedes Vasconcelos ◽  
Maria Alice Altenburg Assis ◽  
Camila Medeiros Mazzeti ◽  
...  

ABSTRACT Objective: Our study aimed to describe body phenotypes (BP) estimated by multivariate analysis and their association with body mass. Design: Body phenotypes were defined based on demographic variables, anthropometric data (body mass, height, skinfolds and circumferences), body composition (phase angle measured by bioelectrical impedance analysis), biochemical parameters (triglycerides, glucose, total cholesterol ratio/Low Density Lipoproteins (LDL), haemoglobin and sexual maturation (pubic hair and breasts or gonads). Analysis of variance (ANOVA) was performed to verify the differences between skin colour and the stages of pubertal development, body phenotypes, body composition, anthropometric, and biochemical variables. Setting: Cities of São Paulo-SP, Piracicaba-SP and Florianópolis-SC from Brazil and the United States. Participants: 9269 adolescents aged between 10 to 15 years old. Results: The composition of BP was similar in all surveys, which are: BP1 was composed by skinfolds, body mass and circumferences variables; BP2 by pubic hair, breast in girls or gonad in boys, height and age; BP3 by cholesterol, triglycerides and glucose; and BP4 by phase angle, haemoglobin and glucose (negative loading). There was a strong correlation (r = 0.9, p <0.001) between BP1 and body mass index. Conclusion: We highlighted independence observed between biochemical parameters, anthropometry, body composition and sexual maturation. BP may support the calculation of scores for diagnosis of obesity based on anthropometric variables and overcome ambiguity in the isolated use of body mass index.


Sign in / Sign up

Export Citation Format

Share Document