scholarly journals Mathematical model of transmembrane potential dynamics of loach early embryogenesis

2021 ◽  
Vol 12 (1) ◽  
pp. 58-64
Author(s):  
G. V. Galyk ◽  
Z. Y. Fedorovych ◽  
E. I. Lychkovsky ◽  
Z. D. Vorobets

Heavy metals in the water environment are known to have a negative effect on the viability of fish in early development. We have discussed the influence of environmental factors on early embryo development from the viewpoint of the correlation adaptometry method. The analysis of time series with the subsequent construction of a mathematical model was used to determine the change in the greatest effect of certain types of ions on the values of the transmembrane potential for prognostic purposes. The membrane potential is accepted as an integral indicator of the state of the embryos. Structures of five elements of the same type were constructed for the time shifts from 0 to 180 minutes. Each element in the system characterizes the value of the transmembrane potential that was measured in a cell incubated in one of the five solutions during early embryo development. Mathematical models describing the cell membrane potential dynamics have been created and studied. It was noted that the transmembrane potential dynamics of embryo cells is dependent on a change in the value of the correlation coefficient between elements of the system. A decrease in the sum of the correlations between individual elements of the system with an increase in the magnitude of the time shift is established. The results of the numerical solutions of the system equations indicated the sequence of changes in the greatest effect of the incubation medium on the value of the membrane potential in cells. The study of the membrane potentials’ dynamics, using the total values of the strength of correlation, confirmed the influence of heavy metals in the incubation medium on the membrane potential of embryo cell in early development.

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2358
Author(s):  
Katarzyna Suwik ◽  
Emilia Sinderewicz ◽  
Dorota Boruszewska ◽  
Ilona Kowalczyk-Zięba ◽  
Joanna Staszkiewicz-Chodor ◽  
...  

Peroxisome proliferator-activated receptors (PPARs), a nuclear receptors for prostacyclin (PGI2) have been recognized as being essential for early embryo development. The objectives of the present study were to determine if the bovine early- and late-cleaved embryos in different stages of early development express PPARγ and PPARδ. Since embryo developmental competence depends on numerous biological factors, we evaluated if the expression of PPARγ and PPARδ correlate with selected embryo quality markers (SOX2, OCT4, PLAC8, IGF1R) in the in vitro produced embryos at different stages of their development. Developmental rates and embryo quality for early- and late-cleaved embryos were provided according to International Embryo Transfer Society (IETS; developmental stages: 2-, 4-, 16-cell embryo, morula, blastocyst (1—early, 2—developing, 3—expanded, 4—hatched); quality stages: A—high quality, B—moderate quality, C—low quality). We found that bovine embryos expressed mRNA of PPARδ and PPARγ at all stages of early development, independently of their quality. In addition, the expression of PPARδ and PPARγ correlated with the expression of quality markers in bovine blastocysts. Positive correlations were stronger and more frequent in the group of early-cleaved embryos, whereas the negative correlations were typical for the group of late-cleaved embryos. Obtained results and available literature reports may indicate the participation of PGI2, via PPARδ and PPARγ, in the processes related to the early embryo development, through the participation of this factor in the modulation of blastocyst hatching, implantation, and post-implantation development.


2019 ◽  
Author(s):  
Isabel Gómez-Redondo ◽  
Priscila Ramos-Ibeas ◽  
Eva Pericuesta ◽  
Benjamín Planells ◽  
Raul Fernández-González ◽  
...  

2021 ◽  
Author(s):  
Zhen Sun ◽  
Hua Yu ◽  
Jing Zhao ◽  
Tianyu Tan ◽  
Hongru Pan ◽  
...  

AbstractLIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28’s role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.


2016 ◽  
Vol 27 (5) ◽  
pp. 768-775 ◽  
Author(s):  
Xue-Shan Ma ◽  
Fei Lin ◽  
Zhong-Wei Wang ◽  
Meng-Wen Hu ◽  
Lin Huang ◽  
...  

Geminin controls proper centrosome duplication, cell division, and differentiation. We investigated the function of geminin in oogenesis, fertilization, and early embryo development by deleting the geminin gene in oocytes from the primordial follicle stage. Oocyte-specific disruption of geminin results in low fertility in mice. Even though there was no evident anomaly of oogenesis, oocyte meiotic maturation, natural ovulation, or fertilization, early embryo development and implantation were impaired. The fertilized eggs derived from mutant mice showed developmental delay, and many were blocked at the late zygote stage. Cdt1 protein was decreased, whereas Chk1 and H2AX phosphorylation was increased, in fertilized eggs after geminin depletion. Our results suggest that disruption of maternal geminin may decrease Cdt1 expression and cause DNA rereplication, which then activates the cell cycle checkpoint and DNA damage repair and thus impairs early embryo development.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162272 ◽  
Author(s):  
Wei Zhao ◽  
Feng Yao ◽  
Mengchen Zhang ◽  
Ting Jing ◽  
Shuang Zhang ◽  
...  

Author(s):  
Xavier Ferraretto ◽  
Karima Hammas ◽  
Marie-Astrid Llabador ◽  
Solenne Gricourt ◽  
Julie Labrosse ◽  
...  

Author(s):  
Shuang Cai ◽  
Shuang Quan ◽  
Guangxin Yang ◽  
Meixia Chen ◽  
Qianhong Ye ◽  
...  

ABSTRACTWith the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 222-231 ◽  
Author(s):  
V. Dinopoulou ◽  
G. A. Partsinevelos ◽  
D. Mavrogianni ◽  
E. Anagnostou ◽  
P. Drakakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document